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Abstract

The target of this study is to examine the substitution effects of long-distance buses in
Switzerland (50km+) and how they will affect mode choice of trains and cars. The main
part consists of an online survey with a stated preference experiment about long-distance
travel choices. In addition to the car and public transport alternative we introduce a
fictional bus service with a dense bus station network in order to explore the trade-offs that
the respondents make between these modes by varying the corresponding trip attributes.
We include usual variables like travel times, travel costs, access/egress and waiting times,
trip frequency as well as the number of changes during a trip. Furthermore, we include
comfort features like additional leg space on the bus and free wi-fi availability for both
bus and train. We estimate standard Multinomial Logit and Mixed Multinomial Logit
models to account for unobserved heterogeneity in cost and travel time sensitivities and
also incorporate typical socio-demographic variables. The results show that in-vehicle
travel times in the main mode and travel costs are the most important decision drivers in
choosing a mode. Interestingly, greater leg space on a bus and free wi-fi on a train have
positive and significant impact on the choice probability. The inclusion of a continuous
distance and income elasticity on cost both yield a decreasing effect on cost sensitivity.
Old people tend to choose buses less frequently relative to younger ones and relative to
public transport. For the choice of cars this only holds for the oldest age cohort. The
values of travel time were found to be reasonable and not substantially different between
the modes.
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1 Introduction

In recent years, long-distance buses have become an increasingly popular mode of transport.
The most prominent example in Europe is Flixbus. They offer very low priced bus trips
that appeal particularly to young, price-sensitive travellers and tourists. Also, an increasing
number of older people take advantage of this offer as travel times are not that important
for many of them when choosing their mode of transport. In addition, according to Flixbus
one long-distance bus of the latest generation is already eco-friendlier than an average
sized car.

Whereas in many European countries the long-distance transport markets are almost
completely liberalized (e.g. UK, Germany, France, Italy), Switzerland’s coach market
is heavily restricted due to international and national regulations. A current law called
"Kabotageverbot" prohibits international bus service providers to transport people within
Switzerland. Furthermore, private companies require a concession issued by the state
to run a bus service. In 2018, the Federal Office of Transport (FOT) granted the first
concession to a national bus provider called "Eurobus Swiss-Express" to operate three
publicly accessible bus lines. However, they were forced to shut down its service due to a
lack of demand. This raised the question of who would use such a bus service if it was
competitive enough and, if so, what would be the main drivers in the decision making to
use it.

The remainder of this report is structured as followed. Section 2 presents the methodologi-
cal framework used to examine long-distance travel behaviour within Switzerland for three
modes - bus, car, and public transport. The main part describes the set-up of the discrete
mode choice experiment, its experimental design and the underlying fictional bus network
together with the modelling approach applied to estimate demand models. In Section 3,
a descriptive analysis investigates the study sample, choice frequencies and basic trade
behaviour between the modes. Multinomial Logit and Mixed Multinomial Logit models
are estimated to calculate marginal probability effects, elasticities and values of travel
time for the different modes considered. Section 4 summarizes the main findings, puts
them into the Swiss context and discusses potential improvements as well as limitations
of the study. It also addresses the potential influence of the COVID-19 pandemic on the
quality of the results.





    

2 Methodology

2.1 General Study Structure

The study was based on a two-phase online survey. In the first phase, we captured the
respondents’ travel behaviour in the French- and German-speaking part of Switzerland 1.
In the main part of that questionnaire we asked respondents to indicate typical commuting
trips and long-distance journeys longer than 50 kilometers within the last two months
inside Switzerland at the point of filling out the survey. The reason for that was to increase
peoples’ awareness of the difference between typical short-distance and long-distance trips
or commuting trips longer than 50 kilometers. In order to keep the response burden
(see Section 3.1) within reasonable limits, we required detailed answers only for one
long-distance journey, broken down by stages (including start and destination, departure
and arrival times, purpose of the journey, comfort features, activities during the journey
and at the destination, costs, overnight stays and so forth). However, we could observe
that people experienced difficulties in reporting their journeys at such detailed level.
Furthermore, we asked for typical socio-demographic variables on personal and household
level as well as attidudinal questions regarding transportation, trying to be as consistent
as possible with the Swiss Microcensus Mobility and Transport 2015 for comparability
and sample weighting reasons (see Section 3.3.4).

The second phase focused on the respondents’ preferences and willingness to pay for
different means of transport. Given their stated journeys in part one, we constructed a
discrete choice experiment to explore the trade-offs that the respondents make between
long-distance modes (bus, car and public transport) by varying the travel time of the
main mode, access/egress and waiting times, number of transfers, comfort features (leg
space and wi-fi availability) and costs.

Based on the collected data we estimated discrete choice models (Multinomial Logit (MNL)
and Mixed Multinomial Logit (MMNL)) which allowed us to examine if respondents have
strong preferences about their options and to reveal how sensitive individuals react to
changes in attributes. In addition, we specifically focused on willingness-to-pay indicators
for the different modes (see Section 3).

1Note that we did not include Italian-speaking residents because of the explicit focus on the German-
and French-speaking areas in Switzerland





    

The study goal was to get a sample of 1’000 respondents.

2.2 Discrete Choice Experiment

At the core of this study was the experimental design of the mode choice experiment
presented to the respondents in phase 2 and specifically the design of the underlying
bus network. As mentioned in Section 2.1, the idea was to use the reported trips of the
participants from phase 1 of the study as reference to construct a stated mode choice
experiment as realistic as possible. Due to the high quality of the Swiss PT network and
the recent failure of a nation wide bus service we constructed a fictional bus network which
is assumed to be as competitive as possible in order to gain insights into the trade-offs
people would make between car, bus and PT in such a setting.

2.2.1 Bus Network

At the time of writing this report, there is no nationwide bus service in place that is
directly embedded in the Swiss public transport schedule. However, we observed how
Eurobus had set up its service in 2018 and 2019. They established 3 bus lines with a total
of 18 bus stations connecting East and West as well as North and South Switzerland. The
stations were mainly located at existing bus terminals that were close to train stations
(e.g. Zurich, Geneva, Basel, Lucerne, Lausanne, St. Gallen), but also close to access and
egress points of highways connecting big cities (e.g. Bern). Switzerland’s major airports
in Zurich, Geneva and Basel were also covered. As opposed to Eurobus, Flixbus with
its international bus line service was still providing bus connections to cities in Europe
at the beginning of the COVID-19 pandemic, even though at reduced frequency and
serving only 19 out of 42 destinations until they were forced to stop operating later on.
In contrast to Eurobus they also offer stops in smaller cities and villages in Switzerland to
pick-up or drop-off travellers (e.g. Splügen). We geo-referenced these bus stations and
took them as a starting point for the bus network in this study. To further expand it and
improve its competitiveness to the PT network, we added a bus station in every Swiss
city with more than 20’000 inhabitants that was not already served by either Eurobus
or Flixbus, and a couple of stations in specific Swiss municipalities without access to
inter-city / inter-regional train connections. We assumed those extra bus stations to be





    

within a reasonable walking distance of 400 meters of train stations and acknowledge that
some of them would actually be difficult to build, as local authorities would have to give
permission (which is a problem of its own and a burdensome process for a bus provider).

In the end, we constructed a bus network with 76 bus stations covering the most important
Swiss cities, airports and bus stations frequently used by Flixbus and former Eurobus (see
Fig. 1).

Figure 1: Bus station network
(green: major inter-city train lines, red: major highways, black dots: bus stations)

2.2.2 Generation of Non-chosen Alternatives

A major task in any discrete choice experiment based on revealed-preference (RP) data
is the generation of non-chosen alternatives. For example, if a respondent would have
reported a long-distance trip by car from Zurich to Geneva, it’s the analysts task to
calculate trip attributes like travel times, costs and so forth for the same trip by a non-
chosen mode. In our setting this would have been the generation of the corresponding
trip attributes for bus and PT in order to construct a mode choice experiment with 3





    

alternatives available to every participant.

Since we have specific details of the respondents’ long-distance trip (main mode, start and
end location2, time of departure, weekday), we could use these information to route all
trips via Google API. While it seems straight forward to just let Google do the routing, it
is necessary to mention a couple of assumptions that we made in that respect3:

– Car routing: We assumed that respondents had a car available at the start location
or in very close distance to it and that they would have a parking space available at
the destination.

– PT routing: We focused on PT connections with inter-city / inter-regional trains as
main mode when it was available in order to get the fastest connection, even though
people might have preferred a different route (the same holds for car routing).

– Bus routing: We did not assume a specific bus schedule since this is not implemented
in the Google API as its own mode. Instead, for each trip, we matched the closest
bus station to its start and end location, which results in a trip with 3 stages:
1. Access to the bus start station from the actual trip start location.
2. The actual bus trip from the bus start to the bus end station, routed as if it

was car.
3. Egress from the bus end station to the actual trip end location.

Furthermore we assumed PT as access and egress mode for the bus alternative and
a specific bus frequency in the experimental design (see Section 2.2.3 for the exact
definition of bus frequency). On the one hand, we acknowledge the limitation of
this definition for bus access and egress as it neglects car sharing/pooling options or
simply a friend’s drop-off service which might be a more reasonable assumption. On
the other hand, it greatly reduces the complexity of the experimental design when
it comes to the calculation of travel cost and defining more assumptions for the bus
alternative.

The most important step in generating non-chosen alternatives is the plausibility check of
the routed trips. For a small number of trips it was not possible to get trip attributes
with the given data for different reasons:

– Start and/or end location was specified incorrectly on the Google map in the
questionnaire (e.g. pin placed on water/on a mountain etc.).

– No connection was found at the time of departure on a specified day of the week.

2The respondents could indicate the start and end location on a Google map in the online questionnaire.
3See Section 2.2.3 for the definition of bus, car and PT availability in the choice experiment





    

– Due to the COVID-19 pandemic, certain PT connections were closed down and not
available at the time of routing the trips (e.g. mostly bus connections for the bus
(access and egress to it) and PT alternative)

To overcome this problem, we corrected falsely specified locations and time of departure
issues manually. We changed such locations up to a point as close as possible where a
connection could be found with Google. For the departure time issue we tried to find a
connection in the morning, afternoon or evening on the same day of week. We hope that
such minor changes have no significant impact on the preferences of participants.

2.2.3 Experimental Design

The goal of the study initially was to construct a personal discrete choice experiment
(DCE) for every participant. A personal choice experiment is based on reported trips and
makes use of individualised reference values as opposed to a standard one that is based on
a trip pre-defined by the analyst. As already mentioned in Section 2.1 we observed that
approximately 73% of the participants in phase 1 reported a long-distance trip (see Table 3
for a detailed overview). Another finding was that from 896 reported trips only 598 could
be used for a personal experiment, because those had a start and end location inside
Switzerland, main mode was car/bus/PT and were longer than 40 kilometers crowfly
distance4. Therefore, we decided to conduct a personal and a standard DCE in order to
achieve the envisaged sample size of 1’000.

In order to investigate peoples’ preferences in choosing a mode for long-distance travelling
it was necessary to take mobility tool ownership into account when constructing the
experiment. We assumed that all 3 alternatives (bus, car and PT) were always available
to all participants, but with different cost structures dependent on their mobility tools. If
respondents had access to a car in their household5 we assumed a price per kilometer of
0.27 CHF for an example car based on TCS (2020). If no car was available, we assumed
that people could rent a car for their trip with Mobility (2020) according to their pricing
scheme which includes a variable time and a fixed distance component. Concerning PT
ticket ownership, we distinguished between a season (General-Abonnement (GA)), a
half-fare ticket (Halbtax (HT)) and full prices for a specific trip. For the season ticket

4See Section 3.2 for an overview of the routed distances and times for all alternatives
5Car availability was given if respondents always had a car available or upon consultation with the car
owner in their household.





    

costs we followed Fröhlich et al. (2012) who converted a yearly cost for a GA into an
average price per kilometer of 0.10 CHF, which we adjusted to current GA costs and
approximately equals 0.12 CHF per kilometer. Full and half-fare costs as well as PT
frequencies for each trip were calculated using the Multi-Agent Transportation Simulation
(MATSim) framework, which includes a module to calculate PT prices and frequencies.
As we assumed 3 stages for a bus trip in our setting with access and egress by PT (see
Section 2.2.1), the final price for a bus trip was given by a mixture of PT and bus prices.
We inferred an average bus cost per kilometer of 0.10 CHF from bus tickets for different
trips that were sold under the Eurobus "Swiss-Express" regime in the two previous years6.
This is in line with an assumption taken by Von Arx et al. (2017) who analysed the
potential of a national long-distance bus service in Switzerland in their report to the
Federal Council. We did not take PT season ticket ownership into account in this cost
for simplicity reasons. Since the Eurobus "Swiss-Express" was embedded in the Swiss
PT schedule, GA owners could use that offer for free (HT owners for half the price) and
just needed to book a seat on the bus for 5 CHF. We did account for the reservation fee
though and added it to the final bus cost. Refer to Table 1 for an overview of the different
prices assumed.

Table 1: Summary table of assumed prices for each alternative

Mode Mobility tool Price

Car Own 0.27 CHF/km
Car Rented 0.55 CHF/km (distance component)

Best price (time component)∗

PT GA 0.12 CHF/km
PT HT Routed trip half-fare price
PT - Routed trip full price
Bus - 0.10 CHF/km
Bus (access & egress) PT: GA,HT,full PT pricing scheme
∗:see Mobility (2020)

In the end, we implemented a D-efficient pivot design (Rose and Bliemer, 2009) for each
experiment type in NGene (ChoiceMetrics, 2014). As mentioned above, the main difference
between the two types is that the personal experiment is based on actual trips made by
the participants whereas for the standard one we routed an example trip for 5 distance

6Eurobus cooperated with Flixbus and used its online ticketing platform to sell tickets.





    

classes according to the distance quantiles of observed trips in our survey sample. Both
experiments account for car accessibility and PT season ticket ownership. Table 2 shows
an overview of the main attributes and its levels we used in our framework. In general,
all travel time attributes (travel/access and egress/waiting) were calculated as described
in Section 2.2.2. In order to present realistic choice situations to each participant, we
applied a couple of restrictions:

– We capped the waiting time to a maximum of 60 minutes.
– Due to our definition of bus stages, the minimum number of transfers for bus was 2.
– Since we did not assume a specific bus schedule, we defined 4 bus frequency levels:
Every 1, 2, 3 and 4 hours. This was a strong assumption, but can be seen as a
competitive service level in comparison the bus schedule that Eurobus had set up
with two buses running per day for each line and direction (and a couple of direct
city-to-city connections).

– We added 15 minutes to the waiting time at the start and end of the main bus trip
to account for possible delays due to lower bus speeds.

The availability of wi-fi and more leg space (more than plus 10 cm) was incorporated as a
dummy variable and thus either available or not.

2.3 Modeling Framework

The modeling approach that we applied is commonly used in discrete choice modeling:
We started with the most basic Multinomial Logit model (MNL 1) including all main
attributes that are mentioned in Section 2.2.3. We then increased the model complexity by
adding trip and socio-demographic characteristics to the model to account for trip distance
effects and taste heterogeneity of the participants. These variables were added as either
alternative-specific coefficients or non-linear interaction effects with some of the main
attributes (MNL 2). A partworth analysis of the MNL 1 model allowed to quantify the
relative weight of each choice attribute within the decision making process of respondents
(Kuhfeld, 2010). It measures their actual relevance in the utility function by accounting
for the mean of each attributes and its corresponding estimated parameter. Furthermore,
it served as a basis to decide for which attributes it could make sense to estimate random
parameters in the Mixed Multinomial Logit model (MMNL). MMNL models assume a
continuous distribution of β over respondents, as opposed to MNL models where β is fixed,





    

Table 2: Design specification and attributes

Experiment

Specification P S

Choice situations 32 40
Blocks 4 5
Choices per respondent 8 8

Experiment Alternatives Levels

Attributes P S Bus Car PT - base +

Cost (CHF) x x x x x -33% 0% +33%
Travel time (h) x x x x x -33% 0% +33%
Access & egress time (h) x x x x -33% 0% +33%
Waiting time (h) x x x x -33% 0% +33%
PT frequency (h) x x x -33% 0% +33%
Bus frequency (h) x x x 1-4
Number of transfers (Nr.) x x x x -1 0 +1
Wi-fi (dummy) x x x x 0, 1
Leg space (dummy) x x x 0, 1
Distance class (km) x x x x 1-5

Note: P = personal DCE, S = standard DCE

and therefore that taste varies across respondents for certain variables. It’s the analysts
task to assume a specific distribution for β (e.g. Uniform, Normal, (negative) Lognormal
etc.) and to draw randomly from it. Also, we included error components to investigate if
there is significant unobserved heterogeneity, following the same principle as for random
parameters. Since the likelihood of a MMNL model is given by an integral without a closed
form solution we need to simulate it as an approximation to this integral. Hence, more
draws is always better than using a low number of draws from the underlying distribution.
Mixed Logit calculations are computationally intensive and require substantial computing
power as the number of draws increases, which is why we used the ETH Euler Cluster
to estimate the final MMNL model with 5000 Sobol draws. We also estimated MNNL’s
with 100 and 1000 draws, but only report the results for the final MNNL model (see
Section 3.3). For all model estimations we used the mixl-package in R (Molloy et al.,
2019).





    

2.3.1 Choice model

The utility equations of the final MMNL model formulation are presented in Eq. (1) to
Eq. (4). The three alternatives are denoted as j ∈ {Bus,Car, PT}. Respondents are
denoted as n ∈ {1, ..., N} and the choice set/situation by t ∈ {1, ..., T}. The alternative-
specific choice set attributes are denoted with k ∈ {attribute1, ..., attributeK}. The choice
cj,n,t is modeled by the alternative-specific utility function for each respondent n and
choice set t, as shown in Eq. (5).

UBus,n,t = XBus,n,tαBus + εBus,n,t (1)

UCar,n,t = XCar,n,tαCar + εCar,n,t (2)

UPT,n,t = XPT,n,tαPT + εPT,n,t (3)

αj,n,t = βj,k,p + Snγj,k,p + ψj,k,n (4)

cj,n,t =


Bus if UBus,n,t > UCar,n,t & UPT,n,t

Car if UCar,n,t > UBus,n,t & UPT,n,t

PT if UPT,n,t > UBus,n,t & UCar,n,t

(5)

Xi,n,t is a vector of alternative-specific choice attributes including the alternative-specific
constants (ASC). The vector αj resembles the corresponding alternative-specific parameters
and is defined according to Eq. (4). It consists of each choice attribute’s main effect
parameter βj,k,p, person-specific socio-demographic characteristics Sn with its parameters
γj,k,p and the aforementioned error components ψj,k,n ∼ N(0, σ2

ψj,k
) that are added to

the ASC’s. We include a continuous income and trip distance elasticity on cost and
the latter as well on alternative-specific travel times for bus, car and PT. Those are
modeled as a non-linear interaction effect following the Mackie et al. (2003) approach
(see Section 3.3 for a detailed formulation). The components εi,n,t capture the remaining
alternative-specific error terms that are assumed to be independently and identically
distributed (IID) extreme value type 1. Furthermore, we incorporated a scale effect on the
personal experiment to account for the fact that we have two experiment types and hence
different scales. To conclude, we included 7 random parameters in the final MMNL model
for cost, travel times and ASC’s where we assumed a negative Lognormal distribution
only for cost to ensure a negative parameter value (i.e. −exp(αj,n,t)). For the travel times





    

and error components we used a Normal distribution. All other parameters are fixed.
Note that the PT alternative is the reference alternative in our framework.

The (conditional) choice probability of an alternative Pn,j(β) in the usual MNL model7 is
given by:

Pn,j(β) =
eβX(j)∑J
j=1 e

βX(j)
(6)

Due to the fact that the MMNL model assumes continuous distribution of β over respon-
dents, β ∼ f(β|Ω), the unconditional choice probability Pn,j(Ω) is now given by an integral
that can not be solved analytically anymore and therefore needs numerical estimation:

Pn,j(Ω) =

∫
β

[
eβX(j)∑J
j=1 e

βX(j)
f(β|Ω)

]
dβ (7)

If the analyst knew where on the assumed distribution an individual was, Eq. (7) would
collapse to Eq. (6). This is why the probability in Eq. (6) is conditional on β and resembles
the usual MNL model, where β is fixed. The MMNL model is estimated by maximising
the Log-likelihood function LL(Φ) conditional on Φ containing all model parameters and
Pn,j being the probability of the chosen alternative j for respondent n:

LL(Φ) =
N∑
n=1

ln(Pn,j(Φ)) (8)

7Choice situation t is neglected here for simplification purposes.





    

3 Results

3.1 Study Participation

The study was structured in 2 phases. The first one was conducted online using Qualtrics8

from September to December 2019, including two reminders for participants that had not
filled it out after the first invitation by letter. The addresses were bought from a Swiss
direct marketing provider following a sampling plan that accounted for a similar age and
gender distribution of people living in the French- and German speaking regions according
to the Swiss Federal Statistical Office (FSO). 1’231 people indicated to participate, which
corresponds to a participation rate of 10.8% and was anticipated because of a relatively
high response burden9 according to Schmid and Axhausen (2019). In the main part we
asked the participants to report a trip within the last two months at the time of filling
out the survey, longer than 50 kilometer crowfly distance inside Switzerland. 73% of 1’231
(896) respondents did make such a trip and reported it. However, as already mentioned in
Section 2.1 we observed that 298 out of 896 trips did not meet those requirements. Hence,
we could not present them a personal discrete choice experiment (DCE). Therefore, we
invited 598 participants for personal and 633 for standard DCE.

The second phase was conducted online as well, taking place from June to September
2020. Participants presented with a personal DCE were specifically framed in a way that
they knew their experiment was based on their trip and that a long-distance bus was
introduced. An issue was the onset of the COVID-19 pandemic that hit Switzerland in
March 2020 and could have affected peoples choices in the experiment probably towards
the car alternative. We thought of explicitly framing the respondents such that they
should try to no let their choice depend on the risk of being infected on a bus or on a
train. Instead, we decided to not do so as it could introduce a change in behaviour that
we can and do not want to account for in this study since it is not about COVID-19 at
all. It proved to be right as we could not see any unexpected choices among the available
alternatives Section 3.2.2.

8Qualtrics is a survey tool to implement online questionnaires that can be accessed with any internet
browser and smart phones. It also provides various ways to conduct stated choice experiments as done
in the second phase.

9The response burden score was approximately 1450 for this questionnaire with no prior recruitment of
participants and an incentive of 10 CHF for completing both phases.





    

Table 3: Participation rates

German French Total

Part 1

Invitations 7’612 3’804 11’416
Responses 1’102 639 1’741
Participation 793 10.4% 438 11.5% 1’231 10.8%

Long-distance Yes 586 7.7% 310 8.2% 896 7.9%
trip reported No 207 128 335

Part 2

Invitations
Personal DCE 377 221 598
Standard DCE 416 217 633

Responses
Personal DCE 353 93.6% 174 78,7% 527 89.5%
Standard DCE 308 74.0% 162 74.7% 470 74.3%

In the end we achieved the desired sample size with 997 respondents that completed both
phases, corresponding to an overall participation rate of 9%.

3.2 Descriptive Analysis

3.2.1 Survey Sample

In Section 2.2 we explained the approach of constructing the experiments and how we
generated the non-chosen alternatives. Under a couple of assumptions we routed all
individual trips via Google API and derived its corresponding attributes (e.g. travel times,
frequencies, transfers and costs). Fig. 2 shows a summary of all SP trips presented in
the personal and standard experiments. Each participant had three alternatives available
(bus, car and PT) in different 8 choice situations, what results in 8 ∗ 527 = 4′216 trips in
the personal and 8 ∗ 470 = 3′760 trips in the standard setting for each mode. The distance
and total travel time was calculated for each trip per alternative and experiment type. It
is obvious that the range of values for distances and travel times is larger for personal
DCE’s compared to standard ones because for the latter there are only five example trips,
one for each distance class. Thus, it intuitively makes sense to observe a couple of outliers
in the personal experiment as these also reflect really long trips reported in phase 1 (the
longest one going from Geneva (West) to Engadin (East) - 530km). It can be seen that





    

the median distances are similar for all alternatives within an experiment type, but almost
50km higher in the standard experiment setting. With regard to the overall travel times
the median travel time for car is clearly the lowest among all three alternatives as a trip
in car almost always is faster compared to bus and PT. As we routed each car trip based
on the weekday and start time reported by the respondent, Google accounted for the
usual traffic circumstances on the given link. The median travel times for bus are slightly
higher than for PT accounting for the fact that on average the number of transfers for
bus was higher in both experiment types due to our definition of a bus trip, which is
split in 3 stages: PT-bus-PT. In comparison to the median distance and travel times of
the Swiss Microcensus Mobility and Transport (MCMT) 2015 (in red), the routed trips
in the personal experiment show a slightly higher median trip distance for the bus and
median travel time for the car alternative. The other median values are substantially
higher in our sample, mainly because we explicitly asked for a long-distance trip in our
survey as opposed to the MZMV 2015 where people report a trip on a randomly chosen
day throughout the year.

Figure 2: Summary descriptives of all SP trips by experiment type

Table 4 shows an overview about the survey sample’s descriptives, including the rep-
resentative MCMT 2015 data as reference, which we filtered for participants living in
French- and German-speaking cantons and trips longer than 40 kilometers. In general, our
sample over-represents the youngest age cohort between 19 and 30 years of age, females
and one-person households, while the other variables show similar frequencies. A way to





    

correct for that bias is described in Section 3.3.4. Since we asked the respondents not only
for the household income, but also personal income, we were able to incorporate these
data in order derive a Value of Travel Time Savings (VTTS) for each person. There were
participants that did not provide their personal yearly income which is why we imputed it
using a logistic regression approach.

3.2.2 Choice behaviour

997 respondents filled out a DCE, either personalised or standardised, with 8 different
choice situations each, which yields 7976 observations. Fig. 3 shows a overview of the
overall choice frequencies by experiment type. In both experiment types the bus alternative
was chosen the least, indicating a low market share of 6.5% in the personal and 11% in
the standard setting. Car and PT were chosen equally often in the standard experiment
compared to a slightly increased choice frequency for car in favour of the bus in the
personal one. On the most aggregate level this suggests that cars and PT act much more
like substitutes for long-distance travelling than bus and PT. Furthermore, it can be seen
that in a standard setting respondents chose bus more frequently.

Figure 3: Choice frequencies by experiment type





    

Table 4: Descriptive analysis of sample compared to the Swiss MCMT 2015

Variable Value % MCMT % Dataset

Age 19-30 years 21.2 28.3
31-40 years 16.2 15.0
41-49 years 21.8 16.7
51-65 years 27.3 25.1
66-81 years 13.5 14.9

gender female 41.1 48.9
male 58.2 51.1

education compulsory education 14.9 4.7
further education 52.0 67.3
university 33.0 27.8

occupation employed 63.6 60.2
student/apprentice 2.8 5.0
unemployed/household duties 30.5 11.0
searching for job 0.7 2.8
retired 2.2 17.6

drivers licence yes 91.0 91.9
no 9.0 8.1

PT season ticket (GA) yes 19.8 17.4
no 80.2 82.6

PT half-fare ticket (HT) yes 39.2 52.8
no 60.8 47.2

household size 1 15.8 53.3
2 37.8 18.1
3 16.9 12.4
4 20.5 10.8
5 6.7 4.3
>5 2.2 1.1

household income under 2,000 CHF 1.0 0.8
2,001 - 4,000 CHF 5.5 5.5
4,001 - 6,000 CHF 13.6 11.5
6,001 - 8,000 CHF 15.6 18.3
8,001 - 10,000 CHF 13.7 14.6
10,001 - 12,000 CHF 12.1 13.3
12,001 - 14,000 CHF 7.0 8.3
14,001 - 16,000 CHF 6.3 6.8
more than 16,000 CHF 10.3 8.6
not provided 15.0 12.1





    

In general, in the standard experiment the participants showed a substantially greater
willingness to trade between the alternatives compared to the personal setting (32.1% vs.
18.8%). Approximately a third of all participants chose all three available alternatives
at least once in 8 choice situations compared to 18% with personalized experiments.
This result is in line with findings in the literature where people show less inertia effects
(choosing the same alternative in all choice situations) in experiments that are not based
on revealed-preference (RP) data since they are not restricted to their own trip when
choosing an alternative (see Fig. 4). In that respect this might be a reason why people
chose bus more frequently in the standard experiment.

Figure 4: Trade behaviour of alternatives by experiment type

Fig. 5 and Fig. 6 give a first insight of the influence of age and personal income per
month on the choice of bus. As expected and already pointed out by Von Arx et al.
(2017) in their analysis, young and low income people were more prone to choose a bus in
their settings than older and richer respondents. Again, these effects seem to be more
pronounced in the standard experiment. It is noticeable that the car was the most chosen
mode of transportation across all age cohorts, except for the oldest participants. This
pattern is not apparent when it comes to the influence of income. For both experiment
types, the lowest income group chose PT more often than car.





    

Figure 5: Choice frequencies by age cohort and experiment type

Figure 6: Choice frequencies by income group and experiment type





    

A closer look at participants in the personal setting offers a more distinguished way to
examine changes in the choice behaviour. A convenient and simple approach is to observe
what main mode participants reported in phase 1 and which mode they chose in 8 SP
choice situations.

Figure 7: Trade behaviour in personal setting

Fig. 7 shows that people who reported a car trip in phase 1 in general show a lower
willingness to choose other modes in the SP experiment. 34% of RP car users always
chose car (8 times) compared to 23% of RP PT users that always chose PT in the SP
experiment. Interestingly, RP PT users tend to choose bus more frequently for 4 and
more times than RP car users in 8 choice situations. They also show greater willingness
to choose a car than car users do to choose PT.





    

3.3 Model Estimation

3.3.1 Estimation Results

All models are based on SP data and do not include the actual RP trips reported in phase
1 of the study. A pooled RP/SP estimation procedure could be further refinement of this
analysis though (see Section 4). The estimation results are shown in Table 5 and Table 6.
A detailed discussion on the coefficients is provided for the MMNL model, including
differences of parameter estimates between the models if necessary.

As mentioned in Section 2.3, we started with the most basic MNL model including only
the main attributes and a scale parameter to account for the difference in variance of the
unobserved factors between the personal and standard experiment and therefore scales
the coefficients to reflect that difference. The scale parameter does not affect the ratio
of any two coefficients since it drops out of it and thus does not influence measures like
willingness-to-pay indicators (Train, 2009). All parameters show the expected sign and
most of them are significant on the 1%-level. The most burdensome process was testing
the influence of socio-demographic variables in order to account for taste heterogeneity in
MNL 2. We followed a bottom-up approach by adding more variables subsequently and
only kept significant parameters with p < 0.1 as well as all main attributes, which turned
out to be important as some of them became statistically significant in the MMNL model.
The most common socio-demographics included in the MNL 2 and MMNL model are age
groups (quartiles), sex, high education (respondents holding a university degree), language
and personal income. Except for income, these variables were included as dummies. We
also tested for interaction effects and shifts in cost and travel time sensitivities with
socio-demographics, but can not report meaningful results in that respect. In addition,
we tried to account for trip purpose (leisure and/or business) as well. Again, we did not
find any meaningful impact on the choice of any alternative. It must be said that this
might be a data issue since many respondents did not report a trip purpose in phase 1
of the study. Furthermore, people’s occupation did not add information to the model.
Trip distance and personal income were modeled as non-linear interaction effects for the
cost and alternative specific travel times. The specific formulation and the results are
discussed in detail later in this section.

To measure how well the models fit the data, we use the corrected Akaike Information





    

Criterion (AICc)10 to compare the goodness of fit across all the models. While the MNL
1 model already yields a promising fit (ρ2 of 0.35), the inclusion of trip distance and
socio-demographics improve the log-likelihood by 146 units (from -5676.6 to -5530.6). The
increase in model complexity through including 7 random coefficients further improves
the log-likelihood substantially by more than 1’000 units (-4527.8) and shows that the
MMNL model clearly outperforms the MNL 2 model. Comparing the AICc’s across all
models shows an even greater improvement when accounting for the fact the we estimated
more parameters with the MMNL. The MMNL models with 100 and 1’000 draws exhibit
an almost identical model fit, but with bigger standard errors on the coefficients. This is
the main benefit of estimating MMNL models with more draws.

All coefficients show the expected signs and most of them are statistically significant at
the 1% level. The scale parameter we included is highly significant and shows that the
variance of unobserved factors in the standard experiment is 26% greater compared to
the personal one. This is intuitive as respondents with a personal experiment often are
more restricted to their reported trip and thus the model is able to replicate their choice
behaviour more accurately. The principle is similar to the use of a scale parameter when
estimating pooled RP/SP choice models, except for the fact that we use SP data (pivoted)
which is only based on reported trips in the personal experiment. We did not include the
actual RP trips for estimation.

Cost is modeled as a generic parameter as opposed to the travel times that are normally
alternative specific. From an economic point of view it makes no sense distinguish between
cost parameters for each alternative as it does not matter on what mode the money
is spent on - money is money. By assuming a negative Lognormal distribution (i.e.
β = −exp(µ + σ rN), where rN ∼ N(0, 1)) for cost we restrict its parameter space to
negative values, accounting for the fact that cost is negatively related to the choice of
an alternative. Hence, we cannot compare the MMNL cost coefficient directly to those
of the MNL models and need to calculate the actual moments (either analytically or
numerically simulated). For βcost they correspond to µβcost = −0.06 and σβcost = 0.04. The
MMNL µ cost coefficient is highly significant and more negative compared to the MNL
model formulations, which indicates a stronger effect of cost on the choice probabilities.
Importantly, the σ cost coefficient of 0.04 shows a significant and substantial amount of
heterogeneity in the cost sensitivity across respondents and hence shows the advantage of
MMNL over MNL being able to account for for unobserved heterogeneity. In addition,
we included a continuous distance and income elasticity on cost by interacting the cost
coefficient with relative distance and income in a non-linear fashion according to Mackie
10The AICc penalizes the inclusion of more parameters in a model more than the usual adjustedρ2.





    

et al. (2003) (see Eq. (9)). The corresponding λ parameters λcost,distance and λcost,income
give the elasticity of cost sensitivity in relation to distance and income. Hence, the µ cost
coefficient is given as cost at mean distance and mean income. Both λcost,distance = −0.22

and λcost,income = −0.12 are significant and negative, indicating decreasing cost sensitivity
as trip distance and personal income become longer and higher respectively. The effect of
distance on the elasticity of cost sensitivity is greater though.

βcost ∗
(

trip distancen
mean trip distance

)λcost,distance

∗
(

incomen
mean income

)λcost,income

(9)

βtravel time, j ∗
(

trip distancen
mean trip distance

)λtravel timej,distance

(10)

For all alternatives we assumed the travel time coefficient to follow a Normal distribution
in order to allow for positive values as well, which might only rarely be the case for any
respondent for long-distance travel, but we still allow for it. We included a distance
elasticity on travel time in the same way we did for the cost parameter (see Eq. (10)).
It can be easily seen that for all modes there is significant heterogeneity in the travel
time sensitivity (σ′s). The strongest impact of travel time can be observed for the bus
alternative (-1.75), closely followed by car (-1.74) and a slightly less negative value for PT.
Accounting for unobserved heterogeneity yields substantially higher travel time effects for
all modes compared to the MNL model estimates. Interestingly, the λ parameters (effect
of distance on the elasticity of travel time) are similar across all alternatives.

Whereas for both the bus and PT alternative access and egress time affects the choice
probability comparably negative, the waiting time has a substantially higher effect for
PT than bus (bus: -1.53 vs. -0.98; PT: -1.54 vs. -1.61). Thus, people perceive higher
waiting times more negatively for PT compared to bus which might be related to the fact
that they are used to a high PT network standard in Switzerland. Furthermore, similar
estimates for access and egress time intuitively make sense as they resemble the same
mode in both alternatives (see Section 2.2.1 for the definition of access and egress of the
bus alternative). The estimated coefficients for trip frequency and number of transfers for
both of these alternatives have negative effect, but significantly lower in comparison to
access and egress as well as waiting time.

With regard to the alternative-specific constants (ASC), the µ coefficient for bus (-2.14)
confirms the findings in Section 3.2.2 that buses on average are chosen less frequently
than PT. As a reminder, the ASC for an alternative captures the average impact on
utility of all factors that are not included in the model relative to the reference alternative,





    

which is PT in our model formulation (Train, 2009). For car the ASC (µ) is positive,
but not statistically significant. Since we included error components on the ASC’s for all
alternatives (we assumed them to follow a Normal distribution), we are able to reveal
unobserved heterogeneity effects for those as well. The σ ASC coefficients (= standard
deviation of µ) are positive and highly significant for all modes showing a significant
amount of unobserved heterogeneity.

When it comes to the comfort features the results give interesting insights. As expected,
additional leg space on a bus has a positive and significant effect on the choice probability
of the bus alternative. Interestingly, the availability of wi-fi on a bus or train has a positive
effect for both modes, although only statistically significant for PT alternative. Even
though it is difficult to justify this result it might be relevant for policy makers or railway
companies in the future.

Effects of socio-demographic variables have to be interpreted in the same way as ASC’s -
relative to the base level, as only differences of utilities matter in discrete choice models
and thus for identification purposes the base level needs to be fixed. A first and important
finding is the negative and significant impact of people belonging to age cohorts 46-59 and
60-81 for bus relative to the youngest age cohort and relative to PT. Again, that result
underpins the findings showed in Section 3.2.2. The same effect can only be observed
for the oldest age cohort for car. While being female has a negative effect for bus and
car relative to PT, only the one for car is significant, indicating that females prefer PT
over car for long-distance trips. Furthermore, there is a significant and negative effect of
highly educated people (people holding a University degree) on the choice of car relative
to PT. Since the study covers the French- and German-speaking area in Switzerland, we
could include a language dummy to examine whether there are differences in behaviour
between people living those areas. As can be seen in the results, there is a positive impact
of French-speakers on the choice of bus and car relative to PT, although more significant
and bigger in magnitude for the bus. A possible reason for that is the higher density of
train stations with access to inter-city trains in the German-speaking area of Switzerland
compared to the French-speaking part. This is quite interesting, but should be treated
with caution as there are French-speaking people living in the German-speaking part of
Switzerland and vice versa.





    

Table 5: Model estimation results

Reference alternative: PT MNL 1 MNL 2 MMNL

Variable coef. (rob. se.) coef. (rob. se.) coef. (rob. se.)

Scale personal experiment 1.19∗∗∗ (0.05) 1.22∗∗∗ (0.07) 1.26∗∗∗ (0.09)

Cost (β) −0.04∗∗∗ (0.00) −0.04∗∗∗ (0.00)
Cost (µ) −3.04∗∗∗ (0.07)
Cost (σ) 0.70∗∗∗ (0.05)
Cost elas. (λ, distance) −0.40∗∗∗ (0.08) −0.22∗∗ (0.10)
Cost elas. (λ, income) −0.08∗∗∗ (0.03) −0.12∗∗∗ (0.03)

Bus ASC (β) −1.82∗∗∗ (0.25) −1.59∗∗∗ (0.30)
Bus ASC (µ) −2.14∗∗∗ (0.44)
Bus ASC (σ) 1.19∗∗∗ (0.17)
Bus travel time (β) −0.89∗∗∗ (0.04) −0.88∗∗∗ (0.06)
Bus travel time (µ) −1.75∗∗∗ (0.14)
Bus travel time (σ) 0.39∗∗∗ (0.10)
Bus travel time elas. (λ, distance) −0.47∗∗∗ (0.14) −0.24∗ (0.12)
Bus access & egress time (β) −0.78∗∗∗ (0.15) −0.86∗∗∗ (0.20) −1.53∗∗∗ (0.25)
Bus waiting time (β) −0.69∗∗∗ (0.26) −0.45∗ (0.25) −0.98∗∗∗ (0.38)
Bus frequency (β) −0.17∗∗∗ (0.04) −0.17∗∗∗ (0.04) −0.25∗∗∗ (0.06)
Bus transfer (β) −0.16∗∗ (0.07) −0.13∗∗ (0.07) −0.26∗∗∗ (0.09)
Bus no wi-fi (β) 0.00 NA 0.00 NA 0.00 NA
Bus wi-fi (β) 0.13 (0.09) 0.18∗∗ (0.09) 0.14 (0.13)
Bus no leg space (β) 0.00 NA 0.00 NA 0.00 NA
Bus leg space (β) 0.24∗∗∗ (0.09) 0.18∗∗ (0.09) 0.32∗∗∗ (0.13)
Bus age 19-29 (β) 0.00 NA 0.00 NA
Bus age 30-45 (β) −0.26 (0.17) −0.09 (0.26)
Bus age 46-59 (β) −0.85∗∗∗ (0.19) −1.08∗∗∗ (0.28)
Bus age 60-81 (β) −0.62∗∗∗ (0.19) −0.74∗∗∗ (0.27)
Bus sex male (β) 0.00 NA 0.00 NA
Bus sex female (β) −0.05 (0.13) −0.15 (0.19)
Bus language German (β) 0.00 NA 0.00 NA
Bus language French (β) 0.27∗ (0.14) 0.47∗∗ (0.20)
Bus non-high education (β) 0.00 NA 0.00 NA
Bus high education (β) 0.09 (0.13) −0.12 (0.20)

Estimated parameters 18 35 42

Respondents 997 997 997

Choice observations 7976 7976 7976

Draws 0 0 5000

LL (choicemodel) −5676.60 −5519.44 −4527.82
Rho2 0.35 0.37 NA
AICc (choicemodel) 11389.91 11133.89 9143.43

∗∗∗p<0.01; ∗∗p<0.05; ∗p<0.1





    

Table 6: Model estimation results (cont.)

Reference alternative: PT MNL 1 MNL 2 MMNL

Variable coef. (rob. se.) coef. (rob. se.) coef. (rob. se.)

Car ASC (β) −0.44∗∗∗ (0.13) 0.00 (0.17)
Car ASC (µ) 0.32 (0.26)
Car ASC (σ) 1.37∗∗∗ (0.16)
Car travel time (β) −0.78∗∗∗ (0.05) −0.84∗∗∗ (0.05)
Car travel time (µ) −1.74∗∗∗ (0.11)
Car travel time (σ) 0.50∗∗∗ (0.08)
Car travel time elas. (λ, distance) −0.34∗∗∗ (0.10) −0.26∗∗∗ (0.08)
Car age 19-29 (β) 0.00 NA 0.00 NA
Car age 30-45 (β) 0.17 (0.12) 0.20 (0.22)
Car age 46-59 (β) −0.03 (0.13) −0.08 (0.23)
Car age 60-81 (β) −0.41∗∗∗ (0.13) −0.67∗∗∗ (0.24)
Car sex male (β) 0.00 NA 0.00 NA
Car sex female (β) −0.34∗∗∗ (0.09) −0.58∗∗∗ (0.16)
Car language German (β) 0.00 NA 0.00 NA
Car language French (β) 0.12 (0.09) 0.29∗ (0.16)
Car non-high education (β) 0.00 NA 0.00 NA
Car high education (β) −0.19∗∗ (0.09) −0.39∗∗ (0.17)

PT ASC (µ) 0.00 NA 0.00 NA 0.00 NA
PT ASC (σ) 0.85∗∗∗ (0.20)
PT travel time (β) −0.93∗∗∗ (0.05) −0.90∗∗∗ (0.05)
PT travel time (µ) −1.66∗∗∗ (0.10)
PT travel time (σ) 0.43∗∗∗ (0.07)
PT travel time elas. (λ, distance) −0.32∗∗∗ (0.11) −0.24∗∗ (0.08)
PT access & egress time (β) −0.88∗∗∗ (0.14) −0.83∗∗∗ (0.13) −1.54∗∗∗ (0.18)
PT waiting time (β) −0.85∗∗∗ (0.18) −0.85∗∗∗ (0.18) −1.61∗∗∗ (0.25)
PT frequency (β) −0.29∗∗ (0.13) −0.33∗∗ (0.13) −0.34∗∗ (0.17)
PT transfer (β) −0.06∗∗ (0.03) −0.07∗∗ (0.03) −0.15∗∗∗ (0.04)
PT no wi-fi (β) 0.00 NA 0.00 NA 0.00 NA
PT wi-fi (β) 0.03 (0.05) 0.04 (0.05) 0.15∗∗ (0.07)

Estimated parameters 18 35 42

Respondents 997 997 997

Choice observations 7976 7976 7976

Draws 0 0 5000

LL (choicemodel) −5676.60 −5519.44 −4527.82
Rho2 0.35 0.37 NA
AICc (choicemodel) 11389.91 11133.89 9143.43

∗∗∗p<0.01; ∗∗p<0.05; ∗p<0.1





    

3.3.2 Partworth Analysis

As already mentioned in Section 2.3, a partworth analysis helps to quantify the relative
weight of each choice attribute within the decision making process of respondents. Based
on the MNL 1 model estimation results, we multiplied the taste parameters βj,k with
the corresponding attribute value for each choice situation. This dimensionless measure
provides information on the attributes’ average importance in the utility function of
each respondent, which we then averaged over all respondents. Fig. 8 shows the relative
partworth of each main attribute. It can be easily seen that travel times and costs of all
alternatives contribute the most to the utility function making up more than 75% of the
total partworth, while the others are substantially less important. It is noteworthy that
all comfort related attributes (wi-fi and leg space) are the three least important attributes
accounting for only 1.5% of the total partworth. This contradicts Van Acker et al. (2019)
who found leg space to be ranked second after travel cost in their analysis of variable
importance. Their finding cannot be directly compared to ours as in their experiment
they did not take into account competing transport modes as for example car and PT.
Still, it is an interesting comparison since they used similar trip distances for bus as we
did in our framework.

Figure 8: Partworth analysis of MNL 1 model





    

3.3.3 Marginal Probability Effects and Elasticities

Derivatives describe the extent of change in choice probabilities in response to a change
in some observed factor while keeping all other variables unchanged (Winkelmann and
Boes, 2006). The difference between marginal probability effects (MPE) and elasticities
(E) is given by the fact that the latter are normalized for the variables’ units (Train, 2009).
In that respect, MPE’s reflect a change of the choice probability of an alternative (Pj)
in percentage points, while elasticities represent a change in percent (see Eq. (11) and
Eq. (12)). We approximated MPEs by calculating the difference in initial probabilities
with those obtained when the attribute of interest is changed by a certain amount.

MPEj,xj = (mean(Pj(xj, new))−mean(Pj(xj, old))) ∗ 100 (11)

Ej,xj =

(
mean(Pj(xj, new))

mean(Pj(xj, old))
− 1

)
∗ 100

(12)

We imposed a 10% change for continuous attributes like cost, times and frequency. Count
and linearised variables like the number of transfers and age quartiles were increased by 1
or changed to the next group respectively. Dummies were changed from the minimum to
maximum value for all observations. Table 7 presents MPEs for the main attributes and
socio-demographic variables (age, education, sex and language). The MPEs presented
did not substantially change between the MNL2 and MMNL model, which is a good sign
in general and confirms the stability of our results once more. However, the model fit
of the Mixed Logit approach is better which is why we focus on the MMNL MPEs. For
completeness, the corresponding elasticities are shown in Table 8.

Bus travel time has the strongest negative impact of all attributes on the bus alternative,
followed by the number of bus transfers and bus cost. This is an example how to interpret
MPEs correctly: Ceteris paribus, a 10% increase in bus travel time decreases the predicted
choice probability for bus by 1.36%-points. If the number of bus transfers was increased by
1, this would have decreased the bus choice probability by 1.03%-points. That might be
an important finding, considering that we assumed PT to be the access and egress mode
of bus trips in our framework, which highly depends on the quality of the PT connection
to a bus start/end station or PT accessibility in general. Interestingly, more leg space
as a comfort feature is the stronger predictor (+1.38%-points) compared to the wi-fi
availability. This is, as already mentioned before, not the the case in the MNL 2 model,
where wi-fi has a stronger effect on the bus choice probability (1.22 vs. 1.15%-points).





    

Bus access and egress time, wait time and bus frequency only have a minor and negative
effect (-0.33, -0.22 and -0.25%-points). It is important to note as well that a change in any
bus specific attribute always affects PT probabilities slightly stronger than those for car,
positively and negatively (only comfort features), indicating bigger substitution effects
going on between bus and PT than bus and car.

For car specific attributes, a 10% increase in travel time yields more than a -1%-point
stronger negative impact on the car choice probability compared to car cost (-3.95 vs
-2.92%-points). These effects are substantially higher in absolute terms compared to
changes in bus cost and travel times. The aforementioned pattern seems to persist: Any
change in a car specific attribute affects corresponding PT choice probabilities substantially
more than bus probabilities.

As expected, PT cost and travel time yield the strongest marginal probability effects on
the PT choice probability (-2.32 and -3.51%-points), which goes in line with the findings
in our partworth analysis (see Section 3.1). As for the bus alternative, an increase in the
number of transfers by one has a higher negative impact on the PT choice probability
compared to access and egress time, wait time and PT frequency, although much higher
in absolute terms with -1.68%-points than -1.03%-points for bus. This indicates higher
disutilities for a change in the number of transfers for both bus and PT compared to
such of frequencies. The availability of wi-fi is highly appreciated by the respondents and
results in a increase of PT choice probability by 1.76%-points. A much higher impact in
comparison to the bus wi-fi availability (0.59%-points).

With regard to the influence of socio-demographic attributes it can be seen that the gender
attribute by far yields the highest change in probabilities: If all respondents were female
this would correspond to almost a full shift of demand towards PT - a 6.57%-point decrease
of the car choice probability and a 6.01%-point increase in PT choice probability. This
could be similarly observed if all participants were highly educated, but less pronounced
in terms of MPE (Car: -4.19% points; PT: +3.93%-points). An interesting change in
probabilities can be seen if all respondents were speaking French. This would result in a
1.43 and 2.38%-point increase of the bus and car choice probability and a -3.81%-point
decrease of the choice probability of PT, which might be related to a lower accessibility to
inter-city train connections in the French-speaking part of Switzerland. This reasoning
should be taken with great caution as there are also French-speaking participants from
the German-speaking area of Switzerland in the sample, albeit only very few. However,
MPEs for socio-demographic choice attributes should not be paid too much attention
since the assumed changes for those are never going to happen in real-life.





    

Although predicted changes in real-world market shares are not reliable when using SP
data (e.g. Glerum et al. (2013)), the results give insights in how people trade-off travel
cost and time among other attributes of interest when directly facing these three mode
alternatives under well-defined experimental conditions. Nevertheless, two findings are
evident. First, travel costs and times can be seen as the strongest predictors of choosing a
mode for long-distance travelling. Comfort features like added leg space in a bus and wi-fi
availability in trains influence the respective choice probability positively and substantially.
Second, whereas changes in bus and car specific attributes are associated with higher
cross-MPEs for PT than for any of the two other modes, changes in PT specific attributes
show higher cross-MPEs for car than bus, either positively or negatively.

3.3.4 Sample Weighting

Due to the fact that the survey sample is not fully representative of the Swiss population as
discussed in Section 3.2 it needs to be re-weighted to population level in order to calculate
meaningful willingness-to-pay indicators. This is done after model estimation as currently
weighting during estimation is not implemented in the mixl package. A common approach
to assign a weight to each person in the sample is Iterative Proportional Fitting (IPF),
also called Raking, which then can be used to get a weighted distribution of Values of
Travel Time (VTT) for example. By using the "anesrake" R-package that implements the
American National Election Study weighting algorithm, each person weight in the survey
sample is iteratively adjusted to approach the marginal distribution of 3 socio-demographic
variables (age, sex and household income11) in the reference population.

A summary of the received distribution of weights is shown in Table 9.

11Personal income is not available in the MCMT 2015, hence, we re-weighted according to household
income.





    

Table 7: Marginal probability effects (in %-points)

MNL 2 MMNL

Variable Bus Car PT Bus Car PT

Bus cost −0.75 0.38 0.37 −0.86 0.38 0.48

Bus travel time −1.29 0.63 0.65 −1.36 0.60 0.76

Bus access & egress time −0.29 0.15 0.14 −0.33 0.16 0.17

Bus wait time −0.16 0.08 0.08 −0.22 0.10 0.12

Bus frequency −0.27 0.13 0.14 −0.25 0.11 0.14

Bus transfers (+1) −0.87 0.43 0.44 −1.03 0.47 0.56

Bus wi-fi (dummy) 1.22 −0.61 −0.61 0.59 −0.27 −0.32

Bus leg space (dummy) 1.15 −0.58 −0.58 1.38 −0.63 −0.75

Car cost 0.80 −3.60 2.80 0.75 −2.92 2.18

Car travel time 0.79 −3.55 2.77 0.86 −3.95 3.09

PT cost 0.58 1.98 −2.57 0.75 1.57 −2.32

PT travel time 0.79 2.64 −3.43 0.94 2.58 −3.51

PT access & egress time 0.12 0.58 −0.69 0.15 0.60 −0.74

PT wait time 0.10 0.44 −0.54 0.13 0.47 −0.60

PT frequency 0.05 0.22 −0.28 0.04 0.13 −0.17

PT transfers (+1) 0.24 1.13 −1.37 0.34 1.35 −1.68

PT wi-fi (dummy) −0.14 −0.66 0.80 −0.35 −1.41 1.76

Age (+1 age quartile) −0.90 −1.48 2.38 −0.50 −1.58 2.08

High education (dummy) 1.32 −4.06 2.74 0.26 −4.19 3.93

Sex female (dummy) 0.76 −6.51 5.75 0.56 −6.57 6.01

Language French (dummy) 1.34 1.49 −2.82 1.43 2.38 −3.81

3.3.5 Willingness-To-Pay Indicators (WTP)

A common approach after model estimation is the assessment of willingness-to-pay
indicators. These are interesting to calculate with respect to travel time because they
can resemble a measure of user benefits in cost-benefit analyses or are being used for the
composition of generalised cost in travel demand forecasting. By definition, the value
of travel time (VTT)12 is the extra cost that a person would be willing to incur to save

12The VTT is also called Value of Travel Time Savings (VTTS) and might be more be familiar to some
researchers. Daly and Hess (2020) recommend to not use the latter terminology as they argue it is
not possible to store or borrow time when speaking of spending or saving time.





    

Table 8: Elasticities (in %)

MNL 2 MMNL

Variable Bus Car PT Bus Car PT

Bus cost −8.68 0.80 0.84 −9.22 0.80 1.11

Bus travel time −14.94 1.34 1.48 −14.62 1.28 1.74

Bus access & egress time −3.42 0.33 0.32 −3.52 0.33 0.39

Bus wait time −1.88 0.17 0.18 −2.35 0.22 0.27

Bus frequency −3.19 0.28 0.33 −2.69 0.23 0.32

Bus transfers (+1) −10.09 0.92 0.98 −11.02 0.99 1.28

Bus wi-fi (dummy) 15.28 −1.28 −1.37 6.55 −0.57 −0.73

Bus leg space (dummy) 14.40 −1.22 −1.29 16.00 −1.33 −1.70

Car cost 9.35 −7.65 6.30 8.04 −6.19 5.00

Car travel time 9.14 −7.55 6.24 9.21 −8.37 7.12

PT cost 6.77 4.22 −5.79 8.02 3.33 −5.34

PT travel time 9.20 5.60 −7.73 10.05 5.46 −8.07

PT access & egress time 1.37 1.22 −1.56 1.56 1.27 −1.71

PT wait time 1.13 0.94 −1.22 1.37 0.99 −1.37

PT frequency 0.61 0.47 −0.62 0.38 0.27 −0.38

PT transfers (+1) 2.83 2.40 −3.10 3.62 2.85 −3.87

PT wi-fi (dummy) −1.63 −1.39 1.82 −3.69 −2.95 4.14

Age (+1 age quartile) −10.42 −3.15 5.36 −5.37 −3.35 4.78

High education (dummy) 16.24 −8.31 6.36 2.81 −8.53 9.42

Sex female (dummy) 9.17−12.98 13.82 6.17−13.05 14.80

Language French (dummy) 16.45 3.19 −6.23 16.25 5.12 −8.52

Table 9: Summary of weights

Min 1st qu. Median Mean 3rd qu. Max

Weights 0.4419 0.7568 0.9124 1.0000 1.2213 2.4265

time (Train, 2009). Remember that travel time in our framework is the actual in-vehicle
travel time of the main mode of the alternative. Fig. 9 shows a summary of the weighted
VTT (in Swiss Francs per hour) obtained from the MMNL model by calculating the ratio
between the posterior parameter estimates for travel times and costs (see Section 3.3).





    

As suggested by Bliemer and Rose (2013), we should focus on the median VTT values
for a respondent given their robustness to extreme outliers, which are present due to the
weighting. The exact values are shown in Table 10.

The median VTT for bus, 28.30 CHF/h, is the highest among all modes, indicating higher
discomfort when travelling in a bus compared to a trip in a car or PT. Since in our
framework, a bus trip is a mixture between PT (access and egress mode) and bus, one
might have expected a median VTT for bus to be within such of car and PT. With 27.90
CHF/h and only 0.40 CHF below the VTT for car is ranked between those for the bus
and PT. The lowest value of travel time can be observed for PT, 26.10 CHF/h. Even
though the VTTs do not to differ much, we see a lower VTT for PT than car which was
also obtained by Hess et al. (2008) in their VTT estimation approach using pooled data
from four studies in Switzerland, although not specifically focusing on long-distance travel
and buses. In their joint model accounting for income and trip elasticities they estimated
a VTT for car of 32.45 CHF/h and 20.38 CHF/h for PT, which are at least for the car
comparable to our findings, but substantially lower for PT. De Lapparent et al. (2009)
focused on the VTT for long-distance trips in three different countries in their study and
testing the results for different assumptions on the distribution. They included a bus
alternative as well, but unfortunately only presented a non mode specific VTT measure.
They reported a VTT for Switzerland in the range of 40-45 Euro/h which is considerably
higher compared to the VTT that we derived. Values of travel times for Switzerland are
also given by the Swiss norms (VSS, 2006). Those are used for the appraisal of transport
projects and define a set of guidelines for cost-benefit analysis. VTTs for car and PT
are available for different travel distance categories up to 155 kilometers - for the longest
one, the VTT for car and PT is 46.90 CHF/h and 30.79 CHF/h respectively. These
measures are dated back to the year 2006 and might be compared to our results with
great caution. Apparently, our estimate of the VTT for car is substantially lower whereas
the one for PT is similar. Interestingly, also Fröhlich et al. (2012) found the VTT for car
to be higher compared to PT in their study. A reason for that could be the assumed price
per kilometer for car which is almost half of what we used to calculate the trip costs (0.13
CHF/km vs. 0.27 CHF/km). In addition, we assumed that people could rent a car for an
even higher price.

To conclude, the median VTT for all modes seem to be reasonable and along the lines
of other research discussed above. There is only little research that explicitly focuses
on long-distance travel in Switzerland which is why it is difficult to validate our results
extensively.





    

Table 10: Summary table of values of travel time for bus, car and PT (in CHF/h)

Mode Min 1st qu. Median Mean 3rd qu. Max

Bus 2.50 17.70 28.30 32.50 43.00 144.30
Car 2.70 17.60 27.90 31.70 40.30 128.40
PT 2.80 16.70 26.10 31.00 40.40 145.50

Figure 9: Boxplot of values of travel time for bus, car and PT

In Table 11 we present further willingness-to-pay indicators that we derived as well. The
most important finding might be that the WTP for access and egress time for both bus
and PT are slightly lower compared to the corresponding median VTT, which for example
De Lapparent et al. (2009) found to be substantially higher (between 70-75 Euro/h) in
their work. Again, they did not distinguish between modes. Furthermore, the WTP for
an hour less waiting time for PT is almost 10 CHF higher as opposed to bus, indicating a
that people dislike waiting for a train much more and perceive it equally strong as access
to and egress from it. On the other hand, people are willing to spend more for transfer
less for bus than for PT. Another finding is that people would spend more than twice as
much for increased leg space than for free wi-fi availability on a bus.





    

Table 11: Summary table of further WTP indicators

Attribute Unit Median WTP

Bus access & egress time CHF/h 24.4

Bus waiting time CHF/h 15.6

Bus frequency CHF/h 4.0

Bus transfers CHF/transfer less 4.1

Bus wi-fi CHF for availability −2.2

Bus leg space CHF for availability −5.2

PT access & egress time CHF/h 24.5

PT waiting time CHF/h 25.7

PT frequency CHF/h 5.4

PT transfers CHF/transfer less 2.3

PT wi-fi CHF for availability −2.4





    

4 Conclusion

This study presents results of a discrete choice experiment to shed light on a possible
bus alternative for long-distance travel inside Switzerland and to better understand how
buses could affect the mode choice of trains and cars. The study was conducted between
September 2019 and 2020 with a final sample size of 997 respondents living in the French-
and German-speaking area of Switzerland. The main feature of the experimental design is
the introduction of a fictional bus service based on a dense network that includes recent bus
stations served by Flixbus and former Eurobus "Swiss-Express" as well as stations in every
city with more than 20’000 inhabitants. In the experiment the participants were faced
with the choice of 3 modes (bus, car and public transport) in 8 different choice situations
based on either a reported or standard trip for a specific distance class and accounting
for their mobility tool respectively. They data was modeled using Multinomial Logit
and Mixed Multinomial Logit models that include trip based variables and respondents
socio-demographic characteristics. To the best of the authors knowledge this study is the
first attempt to not only include hard factors as for example in-vehicle travel time in the
main mode, access and egress as well as waiting time, trip frequency and the number of
transfers, but also soft factors/comfort features like free wi-fi availability and additional
leg space in a multi modal framework. It is worth noting that the COVID-19 pandemic
presumably did not affect the results of the study as could be observed in the descriptive
analysis of the choices and the estimated market shares.

The study estimates a fictional market share for buses between 6% and 11%, depending
on the experiment type and the influence of socio-demographic characteristics. In the real
world, the market share for a bus will heavily depend on the underlying bus network and
the service provided. A substantially greater share of the respondents showed non-trading
behaviour between the alternatives in the personal experiment compared to the standard
setting (31.7% vs. 21.5%). The MMNL model estimation results indicate a significant
impact of unobserved heterogeneity on all random parameters (cost, alternative specific
travel times and error components) and thus justify the use of a mixing distribution for
those coefficients. The inclusion of a continuous distance and income elasticity on cost
both yield a decreasing effect on cost sensitivity which is slightly stronger for distance
compared to income. The distance elasticity on travel time is negative and similar for
bus, car and PT. The marginal probability effects for the MMNL model reveal that the
travel time in the main mode as well as the travel cost is the most important decision
driver for all modes. In addition, more leg space on a bus and free wi-fi availability on
a train seem to be the most important soft factors that influence the choices in favor
of the corresponding mode. After proper re-weighting of the data to population level,





    

the obtained median values of travel time for all modes are reasonable, but do not show
substantial differences. The VTT for PT is the lowest among all alternatives with 26.10
CHF/h and in line with recent research in Switzerland on that topic. The highest VTT is
obtained for the bus, indicating higher discomfort when travelling in a bus compared to
car and PT. The VTT for car, 27.90 CHF/h, ranked between bus and PT in this study
and is usually found to be substantially higher compared to PT in recent literature. A
reason could be that the assumed price per kilometer for an owned car in this study is
twice as much as for example in Fröhlich et al. (2012).

An important fact that is not or only partially covered in this study is the travel time
reliability of a bus service. Since we basically routed the main mode of a bus connection
as a car this might give too optimistic travel times neglecting the lower speed of buses
in general. We added 15 minutes to the waiting time at the start and end of a bus trip
to partially account for that issue. In addition, we neither assumed specific bus lines
nor a specific bus schedule and hence might again be overly optimistic with regard to
the quality of the bus service level. Last but no least, it is important to bear in mind
the Swiss policy context concerning the regulatory restrictions. A bus provider with a
similar level of service as in our framework would probably never be given a concession by
the Federal Office of Transport since it would be deemed as a direct competition for PT
rather than a complementing service. Still, the results provide interesting insights into
the choice of modes for long-distance travel.

For future research there are a couple of ideas that could be included. For example,
incorporating actual RP trips for a pooled model estimation procedure could lead to
even more accurate estimates and yield more insights. Additionally, it is possible to
also account for correlation structures between modes in the form of nests in the error
components of the utilities. Furthermore, it would be interesting to include activities
during long-distance PT trips in order to better explain heterogeneity of taste across
respondents deterministically. Last, it would probably improve the model fit when trip
purpose is taken into account as suggested by other literature.
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