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1. Management Summary 1

1 Management Summary

This project aims at quantifying the demand effects of discounts on train
tickets (the so-called supersaver tickets) issued by the Swiss Federal Railways.
To this end, we analyze a survey-based sample of buyers of supersaver tickets
based on machine learning methods, a subfield of artificial intelligence.

In a first step, we investigate which customer- or trip-related characteristics
(such as the age and gender of the customer, the time or length of the trip,
as well as the discount rate itself) importantly predict various aspects of the
customers’ buying behavior, namely: booking a trip otherwise not realized by
train, buying a first- rather than second-class ticket, or rescheduling a trip (e.g.
away from rush hours) when being offered a supersaver ticket. In a nutshell,
we find that several characteristics like customer’s age, the discount level,
departure time, and capacity utilization of a trip importantly predict whether
supersaver customers book additional trips, reschedule their trips or buy first-
rather than second-class tickets. Yet, the quality of the predictions based on
the characteristics available in the data differs importantly across the buying
behaviors analyzed. While (only) 58% of the decisions to reschedule a trip are
correctly predicted, the correct prediction rates amount to 65% for booking
an additional trip, and 82% for buying a first- rather than second-class ticket
(upselling). Such a predictive machine learning approach can be useful for
a customer segmentation, i.e. to classify buyers of supersaver tickets into
groups according to their likely demand patterns, e.g. individuals inclined
or not inclined to upselling as a function of their characteristics. This might
be helpful as a base for designing particular policies or interventions, e.g. for
adapting marketing efforts to target specific customer segments.

In our main analysis, we apply so-called causal machine learning to assess
the impact of the discount rate on rescheduling a trip, which seems relevant
in the light of capacity constraints at rush hours. Typically, it is challenging
to assess the impact of discounts on consumer behavior due to two underlying
selection problems. First, train connections with low and high demand
(e.g. rush vs. off-peak hours) likely differ in terms of the offered discounts
such that their effects cannot be easily separated from other factors driving
demand. Second, consumers buying a supersaver ticket with a higher discount
generally differ from those already buying it at a lower discount in terms
of (background characteristics driving) their reservation price or customers
paying the regular price, who are not even available in our sample. For this
reason, customer groups are not comparable across discount levels. Our study
overcomes the first selection problem by controlling for a rich set of trip-related
characteristics (e.g. capacity utilization) that capture the varying baseline
demand. This implies that only trips that are similar in these characteristics,
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but vary in terms of discounts are compared to each other to assess the causal
effects of interest. To tackle the second selection problem, we only focus at
individuals who would have bought the ticket within the same (second or first)
class irrespective of the offered discount. As these so-called ‘always-buyers’
are homogeneous in terms of their buying decision and reservation price,
we can evaluate the causal effect of the discounts in this subgroup under
the behavioral assumption that anyone purchasing a trip without discount
also buys it when being offered a discount. Using statistical parlance, we
assume that among the always-buyers (i) the discount rate is quasi-random
conditional on our rich set of trip-related characteristics and (ii) the buying
decision cannot decrease in the discount rate. We note that the second
assumption can even be scrutinized in the data and we do not find evidence
for its violation. Nevertheless, our estimated effects should be taken with a
grain of salt as they refer to a subgroup of consumers only.

Our results suggest that a one percentage point increase in the discount on
average raises the share of rescheduled trips by 0.16 percentage points among
the always-buyers. Furthermore, we also find some evidence that the effects
might differ depending on specific customer- and trip-related characteristics.
For instance, the impact of discounts on the standard ticket price tends to be
higher among leisure travelers and during peak hours (when simultaneously
controlling for several other characteristics). Therefore, our study provides at
least two key insights in the context of Swiss railway transportation. First,
it presents the first empirical evidence suggesting that discounts causally
induce a subgroup of supersaver customers to reschedule their trip. Second, it
points to the likely possibility that the effectiveness of discounts differs across
various customer segments. Such a knowledge on which consumers are most
(or least) affected by offering a discount in terms of their demand behavior
can be helpful for tailoring policies (e.g. marketing campaigns) to specific
groups or trips in order to optimize the effectiveness of supersaver tickets.

As a further analysis based on the causal machine learning approach,
we assess whether discounts increase customer satisfaction among always
buyers according to survey responses. We find positive but very minor
effects, suggesting that discounts of 30% or more on average increase customer
satisfaction by 0.16 points (on a scale of 1 to 10) among always buyers relative
to discounts of less than 30%.

We also consider the discount’s effect on upselling, but point out for that
this kind of analysis and sample definition, data checks point to a violation
of the assumptions required for assessing causal effects. We find that a one
percentage point increase in the discount is associated with a rise of 0.589
percentage points in the share of upgraded tickets in our sample. However,
given that the assumptions underlying our causal approach are likely not
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satisfied, this result should be interpreted with much caution.

As a further word of caution concerning our approach, we emphasize that
with the current data, it is delicate to address questions about overall revenue
(or utilization) as a base for a classical cost-benefit analysis. As our evaluation
relies on buyers of supersaver tickets only, it is not representative for the total
of railway customers. Therefore, we recommend considering the following
options for future evaluations. First, surveying a random sample of customers
with single tickets (rather than buyers of discounted tickets) would permit
analyzing the demand effects across all customer groups (with single tickets)
and account for the likely problem that buyers of supersaver tickets are not
comparable to buyers at regular fares. Second, randomizing the discounts
(at least for specific departure times and/or destinations) by means of an
experiment would help assessing the causal effects without running into the
previously mentioned selection problems. Third, increasing the number of
surveyed individuals would allow for a more thorough investigation of whether
and how the consumer responses differ across subgroups of consumers (e.g.
leisure travelers).

Summing up, our study presents novel evidence on how discounts affect
consumer behavior in the Swiss railway setting, in particular the willingness
to reschedule a trip among customers that would have bought the trip even
without discounts. This may provide helpful insights for the future design of
discount policies as well as empirical studies to further investigate customer
behavior.

2 Introduction

Organizing public transport involves a well-known trade-off between consumer
welfare and provider revenue. Typically, consumers value frequency, reliability,
space, and low fares (Redman, Friman, Gärling, and Hartig, 2013) while
suppliers aim at operating with a minimum number of vehicles to maximize
profits. In general, the allocation can be improved as providers do not account
for the positive externalities on consumers (Mohring, 1972). In particular,
service frequency reduces travelers’ access and waiting costs. This so-called
‘Mohring-effect’ leads to economies of scale, implying the need for subsidies
to achieve the first-best solution in terms of welfare. Consequently, it may be
socially optimal to subsidize railway companies to reduce fares (Parry and
Small, 2009). To assess such a measure’s effectiveness on demand, policy-
makers would need to know how individuals respond to lower fares. However,
it is generally challenging to identify causal effects of discounts on train
tickets (or goods and services in general) due confounding or selection. For
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instance, discounts might typically be provided for dates or hours with low
train utilization such that connections with and without discount are not
comparable in terms of baseline demand. A naive comparison of sold tickets
with and without discount would therefore mix the influence of the discount
with that of baseline demand. In this context, we apply machine learning (a
subfield of artificial intelligence) to convincingly assess how discounts on train
tickets for long-distance connections in Switzerland, the so-called ‘supersaver
tickets’, affect demand, by exploiting a unique data set of the Swiss Federal
Railways (SBB) that combines train utilization records with a survey of
supersaver buyers. Since customer satisfaction is an important issue for both
public transport companies and policy-makers, we also discuss the effects of
supservater tickets on customer satisfaction.

More concisely, our study provides four use cases of machine learning
for business analytics in the railway industry: (i) Predicting buying behav-
ior among supersaver customers, namely whether customers booked a trip
otherwise not realized by train (additional trip), bought a first-class rather
than a second-class ticket (upselling), or reschedule their trip, e.g., away from
rush hours (demand shift); (ii) analyzing the causal effect of the discount
on demand shifts among customers that would have booked the trip even
without discount; (iii) analyzing the causal effect of discounts on customer
satisfaction among among those booking the trip even without discounts. Use
cases (ii) and (iii) are feasible because our unique survey contains information
on how supersaver buyers would have decided in the absence of a discount.
This is, whether they are so-called ‘always buyers’ and would have booked
the connection even at the regular fare and in the same class. Ignoring the
latter condition of bookings in the same class and assuming that individuals
upselling their second-class to a first-class ticket are part of the always buyers,
we (iv) assess the effect of discounts on upselling. In the case of (iv), however,
the results need to interpreted with caution, as the assumptions required for
a causal analysis are likely not satisfied due to the more lenient definition of
always buyers that might include individuals which are apriori not comparable
in terms of their buying behavior.

For all use cases, we use appropriately tailored machine learning tech-
niques, which learn the associations between the demand outcomes of interest,
the discount rate, and further customer or trip-related characteristics in a
data-driven way in order to avoid model misspecification. Such a targeted
combination of predictive and causal machine learning can improve demand
forecasting and decision-making in companies and organizations. While pre-
dictive machine learning permits optimizing forecasts about demand and
customer behavior as a function of observed characteristics, causal machine
learning permits evaluating the causal effect of specific interventions like a
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discount regime for optimizing the offer of such discounts. Concerning the
prediction task, we use the so-called random forest, see Breiman (2001), as a
machine learner to forecast the supersaver customers’ behavior.

Concerning the use cases (ii) to (iv), we rely on two identifying assump-
tions. First, we impose a selection-on-observables assumption implying that
the discount rate is as good as randomly assigned when controlling for our rich
set of trip- and demand-related characteristics. Second, we invoke weak mono-
tonicity of any individual’s decision to purchase an additional trip (otherwise
not realized) in the discount rate, implying that a higher (rather than lower)
discount either positively or not affects any customer’s buying decision. As a
methodological contribution, we formally show how these assumptions permit
tackling the selectivity of discount rates and survey response to identify the
discount rate’s effect on demand shifts (rescheduling away from rush hours)
and customer satisfaction for the subgroup ‘always buyers’. We define the
latter based on the survey information on how customers would have behaved
in the absence of a discount. In addition, we discuss testable implications
of monotonicity, namely that among all survey respondents, the share of
additional trips must increase in the discount rate. Furthermore, the selection
on observables assumptions requires that, conditional on trip- and demand-
related characteristics, the discount must not be associated with personal
characteristics (like age or gender) among always buyers.

We estimate the marginal effect of slightly increasing the (continuously
distributed) discount rate based on the causal forest (CF), see Wager and
Athey (2018) and Athey, Tibshirani, and Wager (2019), for use cases (ii) to
(iv). As a second approach, for these use cases, we apply double machine
learning (DML) to assess the effects of a binary definition of discount rates
based on splitting the latter into two discount categories of less than 30%
(relative to the regular fare) and 30% or more. Further, we investigate the
heterogeneity of effects across all of our observed characteristics using the
CF. In a second heterogeneity analysis, we investigate whether effects differ
systematically across a pre-selected set of characteristics, namely: age, gender,
possession of a half fare travel card, travel distance, whether the purpose
is business, commute, or leisure, and whether the departure time is during
peak hours. To this end, we use the regression approach of Semenova and
Chernozhukov (2020).

Our study is related to a growing literature applying statistical and machine
learning methods for analyzing transport systems, as well as to methodological
studies on causal inference for so-called principal strata, see Frangakis and
Rubin (2002), i.e. endogenous subgroups like the always buyers. Typically, it
is hard to identify the causal effect of some treatment (or intervention) like a
discount on such a non-randomly selected subgroup defined in terms how a
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post-treatment variable (e.g. buying decision) depends on the treatment (e.g.
treatment). One approach is to give up on point identification and instead
derive upper and lower bounds on a set of possible effects for groups alike the
always buyers based on the aforementioned monotonicity assumption (and
possibly further assumptions about the ordering of outcomes of always buyers
and other individuals), see for instance Zhang and Rubin (2003), Zhang,
Rubin, and Mealli (2008), Imai (2008), Lee (2009), and Blanco, Flores, and
Flores-Lagunes (2011). Alternatively, the treatment effect on always buyers
is point-identified when invoking a selection-on-observables or instrumental
variable assumption for selection into the survey, see for instance Huber (2014),
which requires sufficiently rich data on both survey participants and non-
participants for modeling survey participation. In contrast to these previous
studies, the approach in this paper point-identifies the treatment effect by
exploiting the rather unique survey feature that customers were asked about
their behavior in the absence of the discount, which under monotonicity
permits identifying the principal stratum of always buyers directly in the
data.

Furthermore, our work is related to conceptual studies on transport sys-
tems, considering for instance the previously mentioned positive externalities
of an increased service for customers that are not accounted for by trans-
portation providers. Such externalities typically arise from economies of scale
due to fixed costs and a ’Mohring effect’, implying that service frequency
reduces waiting costs (Mohring, 1972). The study by Parry and Small (2009)
suggests that lower fares can boost overall welfare by increasing economies of
scale (off-peak) and decreasing pollution and accidents (at peaks). Similarly,
De Palma, Lindsey, and Monchambert (2017) argue that time-dependent
ticket prices may increase overall welfare as overcrowding during peak hours is
suboptimal for both consumers and providers. As public transport is usually
highly subsidized, governments may directly manage the trade-off mentioned
above. As this involves taxpayer money, it is a question of general interest
how the subsidies should be designed. Based on their results, Parry and Small
(2009) conclude that even substantial subsidies are justified due to lower
fares’ positive welfare effect. In contrast, Basso and Silva (2014) find that
the contribution of transit subsidies to welfare diminishes once congestion is
taxed and alternatives are available, i.e., bus lanes. Irrespective of the specific
policy instrument, the consumer’s willingness to shift demand drives these
policies’ effectiveness. While many factors affect this willingness, most studies
conclude that consumers are price sensitive (Paulley, Balcombe, Mackett,
Titheridge, Preston, Wardman, Shires, and White, 2006). In this context, we
aim at contributing to a better understanding of how time-dependent pricing
translates to consumer decisions and well-beings.
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More broadly, our paper relates to the literature on policies targeting
demand shifts. Among these, the setting of car parking costs, fiscal regulations,
or even free public transport has been analyzed (e.g. Batty, Palacin, and
González-Gil, 2015, Rotaris and Danielis, 2014, Zhang, Lindsey, and Yang,
2018, De Witte, Macharis, Lannoy, Polain, Steenberghen, and Van de Walle,
2006). Another stream of literature applies machine learning algorithms in
the context of public transport. Examples are short-term traffic flow forecasts
for bus rapid transit (Liu and Chen, 2017) or metro (Liu, Liu, and Jia,
2019) services. Further, Hagenauer and Helbich (2017) and Omrani (2015)
implement machine learning algorithms to predict travel mode choices. Yap
and Cats (2020) predict disruptions and their passenger delay impacts for
public transport stops. In other research fields, also applications of causal
(rather than predictive) machine learning are on the rise (see for instance
Yang, Chuang, and Kuan, 2020, Knaus, 2021). This is, to the best of our
knowledge, the first study using causal machine learning in the context of
public transport. Finally, a growing literature discusses the opportunities of
data-driven business decision-making (Brynjolfsson and McElheran, 2016) by
assessing the relevance of predictive and causal machine learning. Ascarza
(2018) and Hünermund, Kaminski, and Schmitt (2021) show that companies
may gain by designing their policies based on causal machine learning. For
instance, firms can target the relevant consumers much more effectively when
accounting for their heterogeneity in terms of reaction to a treatment. Our
study provides a use case of how the machine learning-based assessment of
discounts could be implemented also in other businesses and industries facing
capacity constraints.

This study proceeds as follows.1 Section 3 presents the institutional
setting of passenger railway transport in Switzerland. Section 4 describes our
data, coming from a unique combination of a customer survey and transport
utilization data. Section 5 discusses the identifying assumptions underlying
the causal machine learning approach as well as testable implications. Section
6 outlines the predictive and causal machine learning methods. Section 7
presents the empirical results of all use cases. Section 8 concludes. Appendices
A to E provide supplementary material, namely further tables and graphs on
the analyses conducted.

1Part of this study has already been published as a working paper, see Huber, Meier, and
Wallimann (2021). This report includes further analysis and materials compared to the
working paper.
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3 Institutional Background

The railway system in Switzerland is known for its high quality of service.
Examples include the high level of system integration with frequent services,
synchronized timetables, and comprehensive fare integration, see Desmaris
(2014). In Switzerland, a country of railway tradition, the state owned
incumbent Swiss Federal Railways (SBB) operates the long distance passenger
rail market as monopolist (Thao, von Arx, and Frölicher, 2020). Furthermore,
nationally operating long-distance coaches may only be approved if they do
not ‘substantially’ compete with existing services. Thus, the SBB competes
exclusively with motorized private transport in Swiss long-distance traffic.
The company also owns most of the rail infrastructure, which is funded by
the Federal Government. However, since the end of 2020 the companies
Berne-Lötschberg-Simplon Railways (BLS) and Southeast Railways (SOB)
operate a few links on behalf of the SBB. Different to regional public transport
that Swiss taxpayers subsidize with approximately CHF 1.9 bn per year, the
operation of the long distance public transport itself has to be self-sustaining
(Wegelin, 2018).

Because of the monopoly position of the SBB in long distance passenger
transport, the prices are screened by the Swiss ‘price watchdog’ (or price
monitoring agency) to prevent abuse. Based on the price monitoring act, the
watchdog keeps a permanent eye on how prices and profits develop. By the
end of 2014, the watchdog concluded that the SBB charged too high prices.
As a consequence and through a mutual agreement, the SBB and the Swiss
price watchdog agreed on a significantly higher supply of supersaver tickets,
which were first offered in 2009. Using a supersaver ticket, customers can
travel on long distance public transport routes with a discount of up to 70%.
Thereafter, additional agreements were regularly reached regarding number
and scope of the supersaver tickets. While only a few thousand supersaver
tickets were sold in 2014, sales increased to about 8.8 million in 2019, see
Lüscher (2020).

From the SBB’s perspective, these tickets can serve two purposes. First,
the tickets might be used as means to balance out the utilization of transport
services. For instance, supersaver tickets could reduce the high demand during
peak hours which is a key challenge for public transport. Thus, balancing the
demand may reduce delays and increase the number of free seats which is
valued by the consumers. The average load of SBBs’ seats amounts to 30% in
the long distance passenger transport.2 For this reason, there is in the literal
sense room for improving the allocation. Second, price sensitive customers

2See https://reporting.sbb.ch/verkehr.
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can be acquired during off-peak hours at rather negligible marginal costs.
Despite the increasing interest in the supersaver tickets in recent years,

many users of the Switzerland public transport network purchase a so-called
‘general abonnement’ travel ticket (GA). This (annually renewed) subscription
provides free and unlimited access to the public transport network in Switzer-
land. In 2019, about 0.5 million individuals owned a GA in Switzerland,
roughly 6% of the Swiss population. The GA’s cost amounts to 3,860 and
6,300 Swiss francs for the second and first class, respectively. In the same
year, about 2.7 million individuals held a relatively cheap half fare travel
ticket amounting to 185 Swiss francs. The latter implies a price reduction of
50% for public transport tickets in Switzerland. Overall, discounts provided
through supersaver tickets are slightly lower for owners of half fare tickets,
as the SBB aims to attract non-regular public transport users. In our causal
analysis, we therefore also control for the possession of a half fare ticket.

4 Data

To investigate supersaver tickets’ effect, we use a unique cross-sectional data
set provided by the SBB. Our sample consists of randomly surveyed buyers
of supersaver tickets that purchased their tickets between January 2018 and
December 2019. These survey data are matched with data on distances
between any two railway stops as well as utilization-related information
relevant for the supply and calculation of discounts. In section 7, we provide
descriptive statistics for these data.

4.1 Survey Data

The customer survey is our primary data source. It for instance includes the
outcome variables ‘demand shift’ (use case (ii)), a binary indicator of whether
an interviewee rescheduled her or his trip due to buying a supersaver ticket.
‘Yes’ means that the departure time has been advanced or postponed because
of the discount. A second outcome variable (use case (iii)) characterizing cus-
tomer behavior is an indicator for upselling, i.e. whether someone purchased
a first rather than a second class ticket as a reaction to the discount. Another
question asks whether an interviewee would have bought the train trip in the
same or a higher class even without being offered a discount, which permits
judging whether an additional trip has been sold through offering the discount
and allows identifying the subgroup of always buyers under the assumptions
outlined further below. Our continuously distributed treatment variable is
the discount rate of a supersaver ticket relative to the standard fare, which
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may take positive values of up to 70%.

Furthermore, we observe two kinds of covariates, namely trip- or demand-
related factors and personal characteristics of the interviewee. The former
are important control variables for our causal identification strategy outlined
below and include the difference between the days of purchase and travel,
the weekday, month, and year, an indicator for buying a half fare ticket,
departure time, peak hour,3 number of tickets purchased per person, class
(first or second), indicators for leisure trips, commutes, or business trips, the
number of companions (by children and adults if any) and a judgment of
how complicated the ticket purchase was on a scale from 1 (complicated) to
10 (easy). Furthermore, it consists of indicators for the point of departure,
destination, and public holidays. The personal characteristics include age,
gender, migrant status, language (German, French, Italian), and indicators
for owning a half fare travel ticket or other subscriptions like those of regional
tariff associations, specific connections, and Gleis 7 (‘rail 7’). The latter is a
travelcard for young adults not older than 25, providing free access to public
transport after 7pm.

4.2 Factors Driving the Supply of Supersaver Tickets

In addition to the survey, we have access to factors determining the supply
of supersaver tickets with various discounts. This is crucial for our causal
analysis that hinges on on controlling for all characteristics jointly affecting
the the discount rate and the outcome. While information on the distances
between railway stops in Switzerland is publicly available,4 the SBB provides
us for the various connections with information on utilization data, the number
of offered seats, and contingency schemes, which define the quantity of offered
discounts. This allows us to account for travel distance, offered seats, capacity
utilization, and quantities of offered supersaver tickets for various discount
levels as well as quantities of supersaver tickets already sold (both quantities
at the time of purchase). Furthermore, we create binary indicators for the 27
different contingency schemes of the SBB present in our data, which change
approximately every month.

The variables listed in the previous paragraph are important, as the SBB

3Peak hour is defined as a departure time between 6am and 8:59am or between 4pm and
18:59pm, from Monday to Friday. This time windows is chosen on the base of the SBB’s
train-path prices. For further details, see https://company.sbb.ch/en/sbb-as-business-
partner/services-rus/onestopshop/services-and-prices/the-train-path-price.html (assessed
on March 24 2021).

4See the Open Data Platform of the SBB: https://data.sbb.ch/explore/dataset/linie-
mitbetriebspunkte (accessed on March 24 2021).
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calculates the supply of supersaver tickets based on an algorithm considering
four type of inputs: Demand forecasts, advance booking deadlines, number
of supersaver tickets already sold, and contingency schemes defining the
amount and the size of offered discounts based on the three previous inputs.
The schemes are set as a function of the SBB’s self-imposed goals such as
customer satisfaction but also depend on the requirements imposed by the
price watchdog. The algorithm calculates a journey’s final discount as a
weighted average of all discounts between any two adjacent railway stops
along a journey. The weights depend on the distances of the respective
subsections of the trip. To approximate the (not directly available) demand
forecasts of the SBB, we consider the quarterly average of capacity utilization
and the number of offered seats for any two stops, which are available by
(exact) departure time, workday, class, and weekend. In addition, we make
use of indicators for place of departure, destination, month, year, weekday
and public holidays. We use this information to reconstruct the amount
and size of offered discounts by taking values from the contingency schemes
that correspond to our demand forecast approximation combined with the
difference between buying and travel days. Comparing this amount and
size of offered discounts with a buyer’s discount, we estimate the number of
supersaver tickets already sold for the exact date of purchase.

4.3 Sample Construction

Our initial sample contains 12,966 long-distance train trips that cover 61,469
sections between two adjacent stops. For 12.2% of these sections, there is
no information on the capacity utilization available, which can be due to
various reasons. First, for some cases, capacity utilization data is missing.
Second, passengers traveling long-distance may switch to regional transport
in exceptional cases causing problems for determining utilization. A further
reason could be issues in data processing. Altogether, missing information
occurs in 3,967 trips of our initial sample. We tackle this problem by dropping
all journeys with more than 50% of missing information, which is the case
for 320 trips or 2.5% of our initial sample. After this step, our evaluation
sample consists of 12,646 trips. For the remaining 3,647 trips with missing
information (which now account for a maximum of 50% of all sections of
a journey), we impute capacity utilization as the average of the remaining
sections of a trip. In our empirical analysis, we include an indicator for
whether some trip information has been imputed as well as the share of
imputed values for a specific trip as control variables. Finally, we note that
our causal analysis makes (in contrast to the predictive analysis) only use of
a subsample, namely observations identified as always buyers who would have
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traveled even without a discount, all in all 6,112 observations.

5 Identification

We subsequently formally discuss the identification strategy and assumptions
underlying our causal analysis of the discounts among always buyers.

For simplification we discuss the identification strategy of the use case (ii),
that is analyzing the effect of discounts on demand shift. The identification
strategy remains the same for customer satisfaction in use case (iii). However,
the definition of the subgroup always buyers changes in use case (iv). We
discuss this modification when presenting the empirical results in Section 7.

5.1 Definition of Causal Effects

Let D denote the continuously distributed treatment ‘discount rate’ and Y
the outcome ‘demand shift’, a binary indicator for rescheduling a trip due
to being offered a discount. More generally, capital letters represent random
variables in our framework, while lower case letters represent specific values
of these variables. To define the treatment effects of interest, we make use
of the potential outcome framework, see for instance Rubin (1974). To this
end, Y(d) denotes the potential outcome hypothetically realized when the
treatment is set to a specific value d in the interval [0, Q], with 0 indicating
no discount and Q indicating the maximum possible discount. For instance,
Q = 0.7 would imply the maximum discount of 70% of a regular ticket
fare. The realized outcome corresponds to the potential outcome under the
treatment actually received, i.e. Y = Y(D), while the potential outcomes
under discounts different to one received remain unknown without further
statistical assumptions.

A further complication for causal inference is that our survey data only
consists of individuals that purchased a supersaver ticket, a decision that is
itself an outcome of the treatment, i.e. the size of the discount. Denoting
by S a binary indicator for purchasing a supersaver ticket and by S(d) the
potential buying decision under discount rate d, this implies that we only
observe outcomes Y for individuals with S = 1. In general, making the survey
conditional on buying introduces Heckman-type sample selection (or collider)
bias, see Heckman (1976) and Heckman (1979), if unobserved characteristics
affecting the buying decision S also likely affect the inclination of shifting
the timing of the train journey Y. Furthermore, it is worth noting that
S = S(D) implies that buying a supersaver ticket is conditional on receiving
a non-zero discount. For this reason, non-treated subjects paying regular
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fares (with D = 0) are not observed in our data. Yet, the outcome in our
sample is defined relative to the behavior without treatment, as Y indicates
whether a has passenger has changed the timing of the trip because of a
discount. This implies that Y(0) = 0 by definition, such that the causal
effect of some positive discount d vs. no discount is Y(d)− Y(0) = Y(d) is
directly observable among observations that actually received d. However,
it also appears interesting to investigate whether the demand shift effect
varies across different (non-zero) discount rates d ∈ (0, Q] to see whether
the size matters. This is complicated by the fact that supersaver customers
with different discount rates that are observed in our data might in general
differ importantly in terms of background characteristics also affecting the
outcome, exactly because they bought their trip and were selected into the
survey under non-comparable discount regimes. Our causal approach aims at
tackling exactly this issue to establish customer groups that are comparable
across discount rates in order to identify the effect of the latter.

Based on the potential notation, we can define different causal parameters
of interest. For instance, the average treatment effect (ATE) of providing
discount levels d vs. d′ (for d 6= d′) on outcome Y, denoted by ∆(d, d′),
corresponds to

∆(d, d′) = E[Y(d)−Y(d′)]. (1)

Furthermore, the average partial effect (APE) of marginally increasing the
discount level at D = d, denoted by θ(d), is defined as

θ(d) = E
[

∂Y(D)

∂D

]
. (2)

Accordingly, θ(D) corresponds to the APE when marginally increasing the
actually received discount of any individual (rather than imposing some
hypothetical value d for everyone).

The identification of these causal parameters based on observable infor-
mation requires rather strong assumptions. First, it implies that confounders
jointly affecting D and Y can be controlled for by conditioning on observed
characteristics. In our context, this appears plausible, as treatment assignment
is based on variables related to demand (like weekdays or month), contingency
schemes, capacity utilization, and supersaver tickets already sold - all of which
is available in our data, as described in section (4). Second, identification
requires that selection S is as good as random (i.e., not associated with out-
come Y) given the observed characteristics and the treatment, an assumption
known as missing at random (MAR), see for instance Rubin (1976) and
Little and Rubin (1987). However, the latter condition appears unrealistic
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in our framework, as our data lack important socio-economic characteristics
likely affecting preferences and reservation prices for public transport, namely
education, wealth, or income. For this reason, we argue that the ATE and
APE among the individuals selected for the survey (S = 1), i.e. conditional
on buying a supersaver ticket, which are defined as

∆S=1(d, d′) = E[Y(d)−Y(d′)|S = 1], θS=1(D) = E
[

∂Y(D)

∂D

]
, (3)

cannot be plausibly identified either. The reason is that if an increase in the
discount rate induces some customers to buy a supersaver ticket, then buyers
with lower and higher discounts will generally differ in terms of their average
reservation prices and related characteristics (as education or income), which
likely also affect the demand-shift outcome Y.

To tackle this sample selection issue, we exploit the fact that our data
provide information on whether the supersaver customers would have pur-
chased a ticket for this specific train trip also in the absence of any discount.
Provided that the interviewees give accurate responses, we thus have infor-
mation on S(0), the hypothetical buying decision without treatment. Under
the assumption that each customer’s buying decision is weakly monotonic in
the treatment in the sense that anyone purchasing a trip in a specific travel
class (e.g., second class) without discount would also buy it for that class
in the case of any positive discount, this permits identifying the group of
always buyers. Importantly, we therefore define always buyers as those that
would buy the trip not in a lower travel class (namely second rather than
first class) without discount. For alway buyers, S(0) = S(d) = 1 for any
d > 0, such that their buying decision is always one and thus not affected
by the treatment, implying the absence of the selection problem. In the
denomination of Frangakis and Rubin (2002), the always buyers constitute a
so-called principal stratum, i.e., a subpopulation defined in terms of how the
selection reacts to different treatment intensities. Therefore, sample selection
bias does not occur within such a stratum, in which selection behavior is by
definition homogeneous. For this reason, we aim at identifying the ATE and
APE on the always buyers:

∆S(0)=1(d, d′) = E[Y(d)−Y(d′)|S(0) = 1]

= E[Y(d)−Y(d′)|S(0) = S(d′′) = 1] for d′′ ∈ (0, Q],

θS(0)=1(D) = E
[

∂Y(D)

∂D

∣∣∣S(0) = 1
]

= E
[

∂Y(D)

∂D

∣∣∣|S(0) = S(d′′) = 1
]

(4)
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where the second equality follows from the monotonicity of S in D that is
formalized further below.

Figure 1: Causal framework

Figure 1 provides a graphical illustration of our causal framework based
on a directed acyclic graph, with arrows representing causal effects. Observed
covariates X that are related to demand are allowed to jointly affect the
discount rate D and the demand-shift outcome Y. X may influence the
potential purchasing decision under a hypothetical treatment S(d), implying
that buying a ticket given a specific discount depends on observed demand
drivers like weekday, month, etc. Furthermore, unobserved socio-economic
characteristics V (like the reservation price) likely affect both S(d) and
Y. This introduces sample selection when conditioning on S, e.g. by only
considering survey respondents (S = 1). We also note that S is deterministic
in D and S(d) (as S = S(D)), even when controlling for X. This is the
case because conditional on S = 1, D is associated with V, which also
affects Y, thus entailing confounding of the treatment-outcome relation. A
reason for this is for instance that buyers under higher and lower discounts
are generally not comparable in terms of their reservation prices. In the
terminology of Pearl (2000), S is a collider that opens up a backdoor path
between D and Y through V. Theoretically, this could be tackled by jointly
conditioning on the potential selection states under treatment values d vs.
d′ considered in the causal analysis, namely S(d), S(d′), as controls for the
selection behavior. This is typically not feasible in empirical applications when
only the potential selection corresponding to the actual treatment assignment
is observed, S = S(D). In our application, however, we do have information
on S(0) and can thus condition on being an always buyer under the mentioned
monotonicity assumption.
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5.2 Identifying Assumptions

We now formally introduce the identification assumptions underlying our
causal analysis.

Assumption 1 (identifiability of selection under non-treatment):
S(0), is known for all subjects with S = 1.

Assumption 1 is satisfied in our data in the absence of misreporting, as sub-
jects have been asked whether they would have bought the train trip even in
the absence of discount.

Assumption 2 (conditional independence of the treatment):
Y(d), S(d)⊥D|X for all d ∈ (0, Q].

By Assumption 2, there are no unobservables jointly affecting the treatment
assignment on the one hand and the potential outcomes or selection states
under any positive treatment value on the other hand conditional on covariates
X. This assumption is satisfied if the treatment is quasi-random conditional
on our demand-related factors X. Note that the assumption also implies that
Y(d)⊥D|X, S(0) = 1 for all d ∈ (1, Q].

Assumption 3 (weak monotonicity of selection in the treatment):
Pr(S(d) ≥ S(d′)|X) = 1 for all d > d′ and d, d′ ∈ (1, Q].

By Assumption 3, selection is weakly monotonic in the treatment, implying
that a higher treatment state can never decrease selection for any individual.
In our context, this means that a higher discount cannot induce a customer to
not buy a ticket that would have been purchased under a lower discount. An
analogous assumption has been made in the context of nonparametric instru-
mental variable models, see Imbens and Angrist (1994) and Angrist, Imbens,
and Rubin (1996), where, however, it is the treatment that is assumed to be
monotonic in its instrument. Note that monotonicity implies the testable im-
plication that E[S− S(0)|X, S = 1, D = d] = E[(1− S(0)|X, S = 1, D = d]
weakly increases in treatment value d. In words, the share of customers that
bought the ticket because of the discount must increase in the discount rate
in our survey population when controlling for X.

Assumption 4 (common support):
f (d|X, S(0) = 1) > 0 for all d ∈ (1, Q].

Assumption 4 is a common support restriction requiring that f (d|X, S(0) = 1),
the conditional density of receiving a specific treatment intensity d given
X and S(0) = 1 (or conditional probability if the treatment takes discrete
values), henceforth referred to as treatment propensity score, is larger than
zero among always buyers for the treatment doses to be evaluated. This im-
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plies that the demand-related covariates X do not deterministically affect the
discount rate received such that there exists variation in the rates conditional
on X.

Our assumptions permit identifying the conditional ATE given X (CATE),
denoted by ∆X,S(0)=1(d, d′) = E[Y(d)− Y(d′)|X, S(0) = 1] for d 6= d′ and

d, d′ ∈ (1, Q]. To see this, note that

∆X,S(0)=1(d, d′) = E[Y|D = d, X, S(0) = 1]− E[Y|D = d′, X, S(0) = 1],

= E[Y|D = d, X, S(0) = 1, S = 1]

− E[Y|D = d′, X, S(0) = 1, S = 1], (5)

where the first equality follows from Assumption 2 and the second from
Assumption 3, as monotonicity implies that asymptotically, S = 1 if S(0) = 1.
Together with Assumption 1, which postulates the identifiability of S(0), it
follows that the causal effect on always buyers is nonparametrically identified,
given that common support (Assumption 4) holds. If follows that the ATE
among always buyers is identified by averaging over the distribution of X
given S(0) = 1, S = 1:

∆S(0)=1(d, d′) = E[E[Y|D = d, X, S(0) = 1, S = 1]

−E[Y|D = d′, X, S(0) = 1, S = 1]|S(0) = 1, S = 1]. (6)

Furthermore, considering (5) and letting d− d′ → 0 identifies the condi-
tional average partial effect (CAPE) of marginally increasing the treatment at

D = d given X, S(0) = 1, denoted by θX,S(0)=1(D) = E
[

∂Y(D)
∂D

∣∣∣|X, S(0) = 1
]
:

θX,S(0)=1(d) = ∂E[Y|D=d,X,S(0)=1,S=1]
∂D . (7)

Accordingly, the APE among always buyers that averages over the distribu-
tions of X and D is identified by

θS(0)=1(D) = E
[

∂E[Y|D,X,S(0)=1,S=1]
∂D

]
. (8)

Our identifying assumptions yield a testable implication if some personal
characteristics (like customer’s age) that affect S(d) are observed, which
we henceforth denote by W. In fact, D must be statistically independent
of W conditional on X, S(0) = 1, S = 1 if X is sufficient for avoiding any
cofounding of the treatment-outcome relation. To see this, note that personal
characteristics must by Assumption 2 not influence the treatment decision
conditional on X. This statistical independence must also hold within sub-
groups (or principal strata) in which sample selection behavior (and thus
sample selection/collider bias) is controlled for like the always buyers, i.e.
conditional on S(d), S = 1.
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6 Estimation based on machine learning

In this section, we outline the predictive and causal machine learning ap-
proaches used in our empirical analysis of the evaluation sample. For simplifi-
cation, we again present the machine learning approaches used to analyze the
outcome ’demand shift’ for both, predictive and causal (use case (ii)) machine
learning.

6.1 Predictive Machine Learning

Let i ∈ {1, ...., n} be an index for the different interviewees in our sample
of size n and {Yi, Di, Xi, Wi, Si(0)} denote the outcome, treatment, the co-
variates related to the treatment and the outcome, the observed personal
characteristics, and the buying decision without discount of these interviewees
that by the sampling design all satisfy Si = 1 (because they are part of the
survey). Therefore, Yi represents customer i’s demand shift (rescheduling
behavior) under customer i’s received discount rate Di relative to no discount.
We in a first step investigate which observed predictors among the covariates
X, W as well as the size of the discount D are most powerful for predict-
ing demand shifts by machine learning algorithms. We point out that this
analysis is of descriptive nature as it does not yield the causal effects of the
various predictors, but merely their capability of forecasting Y. In particular,
our approach averages the predictions of Y over different levels of treatment
intensity D and thus different customer types in terms of reservation price
(related to S(0)) and unobserved background characteristics that likely vary
with the treatment level.

Therefore, we also perform the prediction analysis within subgroups defined
upon the treatment level to see whether the set of important predictors is
affected by the treatment intensity. To this end, we binarize the treatment
such that it consists of two categories, namely (non-zero) discounts below
30%, i.e. covering the treatment range d ∈ (0, 0.3), and more substantial
discounts of 30% and more, d ∈ [0.3, 0.7], as 70% is the highest discount
observed in our data. In the same manner, we also assess the predictive power
when considering the decision to buy a trip that would not have been realized
without discount (additional trip), i.e. Si − Si(0), as outcome. As Si = 1 is
equal to one for everyone, the outcome corresponds to 1− Si(0) and indicates
whether someone has been induced purchase the ticket because of the discount,
i.e. is not an always buyer. As a further consumer behavior-related outcome
to be predicted, we also consider buying a first class rather than second class
ticket because of the discount (upselling).

Prediction is based on the random forest, a nonparametric machine learner
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suggested by Breiman (2001) for predicting outcomes as a function of covari-
ates. Random forests rely on repeatedly drawing subsamples from the original
data and averaging over the predictions in each subsample obtained by a
decision tree, see Breiman, Friedman, Olshen, and Stone (1984). The idea of
decision trees is to recursively split the covariate space, i.e. the set of possible
values of X, W, into a number of non-overlapping subsets (or nodes). Recursive
splitting is performed such that after each split, a statistical goodness-of-fit
criterion like the sum of squared residuals, i.e. the difference between the
outcome and the subset-specific average outcome, is minimized across the
newly created subsets. Intuitively, this can be thought of as a regression
of the outcome on a data-driven choice of indicator functions for specific
(brackets of) covariate values. At each split of a specific tree, only a random
subset of covariates is chosen as potential variables for splitting in order to
reduce the correlation of tree structures across subsamples, which together
with averaging predictions overall subsamples reduces the estimation variance
of the random forest when compared to running a single tree in the original
data. Even when using an excessive number of splits (or indicator functions
for covariate values) such that some of them do not importantly predict the
outcome, averaging over many samples will cancel out those non-predictive
splits that are only due to sampling noise. Forest-based predictions can be
represented by smooth weighting functions that bear some resemblance with
kernel regression, with the important difference that random forests detect
predictive covariates in a data-driven way. We use the randomforest package
by Breiman (2018) for the statistical software R to implement the random
forest based on growing 1,000 decision trees.

6.2 Causal Machine Learning

Our second part of the analysis assesses the causal effect of increasing discount
rates on demand shifts among always buyers while controlling for the selection
into the survey and the non-random assignment of the treatment based on
Assumptions 1 to 4 of section 5.5 We apply the causal forest (CF) approach
of Wager and Athey (2018), and Athey, Tibshirani, and Wager (2019) to
estimate the CAPE and APE of the continuous treatment, as well as the
double machine learning (DML) approach of Chernozhukov, Chetverikov,
Demirer, Duflo, Hansen, Newey, and Robins (2018) to estimate the ATE of
a binary treatment of a discount ≥ 30% vs. < 30% in the sample of always
buyers.

5For simplification we outline the causal machine learning approaches used in our empirical
analysis of the use case (ii), that is analyzing the effect of discounts on demand shift.
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The CF adapts the random forest to the purpose of causal inference. It
is based on first running separate random forests for predicting the outcome
Y and the treatment D as a function of the covariates X using leave-one-
out cross-fitting. The latter implies that the outcome or treatment of each
observation is predicted based on all observations in the data but its own, in
order to safeguard against overfitting bias. Second, the predictions are used
for computing residuals of the outcomes and treatments, in which the influence
of X has been partialled out. Finally, a further random forest is applied to
average over so-called causal trees, see Athey and Imbens (2016), in order to
estimate the CAPE. The causal tree approach contains two key modifications
when compared to standard decision trees. First, instead of an outcome
variable, it is the coefficient of regressing the residual of Y on the residual
of D, i.e. the causal effect estimate of the treatment, that is to be predicted.
Recursive splitting aims to find the largest effect heterogeneities across subsets
defined in terms of X to estimate the CAPE accurately. Secondly, within each
subset, different parts of the data are used for estimating (a) the tree’s splitting
structure (i.e., the definition of covariate indicator functions) and (b) the
causal effect of the treatment to prevent spuriously large effect heterogeneities
due to overfitting.

The CAPE estimate obtained by CF can be thought of as a weighted
regression of the outcome residual on the treatment residual. The random
forest-determined weight reflects the importance of a sample observation for
assessing the causal effect at specific values of the covariates. After estimating
the CAPE given X, the APE is obtained by appropriately averaging over the
distribution of X among the always buyers. For implementing CAPE and APE
estimation, we use the grf package by Tibshirani, Athey, Friedberg, Hadad,
Hirshberg, Miner, Sverdrup, Wager, and Wright (2020) for the statistical
software R. We set the number of trees to be used in a forest to 1000. We select
any other tuning parameters like the number of randomly chosen covariates
considered for splitting or the minimum number of observations per subset
(or node) by the built-in cross-validation procedure.

We also estimate the ATE among always buyers in our sample based on
DML for a binary treatment defined as D̃ = I{D ≥ 0.3}, with I{·} denoting
the indicator function that is equal to one if its argument is satisfied and zero
otherwise. Furthermore, let µd(X) = E[Y|D̃ = d, X, S(0) = 1, S = 1] denote
the conditional mean outcome and pd(X) = Pr(D̃ = d|X, S(0) = 1, S = 1)
the propensity score of receiving treatment category d (with d = 1 for a
discount ≥ 30% and d = 0 otherwise) in that population. Estimation is
based on the sample analog of the doubly robust identification expression for
the ATE, see Robins, Rotnitzky, and Zhao (1994) and Robins and Rotnitzky



7. Empirical results 21

(1995):

∆S(0)=1(1, 0) = E
[

µ1(X)− µ0(X) +
(Y− µ1(X)) · D̃

p1(X)
(9)

− (Y− µ0(X)) · (1− D̃)

p0(X)

∣∣S(0) = 1, S = 1
]

.

We estimate (9) using the causalweight package for the statistical software R
by Bodory and Huber (2018). As machine learners for the conditional mean
outcomes µD(X) and the propensity scores pD(X) we use the random forest
with the default options of the SuperLearner package of van der Laan, Polley,
and Hubbard (2007), which itself imports the ranger package by Wright and
Ziegler (2017) for random forests. To impose common support in the data
used for ATE estimation, we apply trimming threshold of 0.01, implying that
we drop observations with estimated propensity scores smaller than 0.01 (or
1%) and larger than 0.99 (or 99%) from our sample.

7 Empirical results

In this section, we start with presenting descriptive statistics of our data used
in this study. Then, this section shows the results of our four use cases of
machine learning for business analytics in the railway industry. For use case
(i), we present the results of the predicting buying behavior among supersaver
tickets. This is followed with the use cases (ii), (iii) and (iv), discussing
the effect of discounts on demand shift, customer satisfaction and upselling
respectively. For the latter three use cases we always present first the (causal)
effects of discounts and second the effect heterogeneity.

7.1 Descriptive Statistics

Before discussing the results of our machine learning approaches, we present
some descriptive statistics for our data in Table 1, namely the mean and
the standard deviation of selected variables by always buyer status and
binary discount category (≥ 30% and < 30%). We see that discounts and
regular ticket fares of always buyers are on average lower than those of other
customers. Another interesting observation is that in either discount category,
we observe less leisure travelers among the always buyers than among other
customers, which can be rationalized by business travelers responding less
to price incentives by discounts. This is also in line with the finding that
always buyers tend to purchase more second class tickets. More generally,
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we see non-negligible variation in demand-related covariates across the four
subsamples defined in terms of buying behavior and discount rates. For
instance, among always buyers, the total amount of supersaver tickets offered
is on average larger in the higher discount category, while it is lower among
the remaining clients.6 This suggests that neither the treatment nor being
an always buyer is quasi-random, a problem we aim to tackle based on our
identification strategy outlined in section 5. Concerning the demand-shift
outcome, we see that always buyers change the departure time less frequently
than others. With regard to upselling, we observe that the relative amount
of individuals upgrading their 2nd class to a 1st class ticket is rather stable
across both discount categories, i.e. ≥ 30% and < 30%.

7.2 Predicting buying decisions

We subsequently present our predictive analysis based on the random forest
and investigate which covariates importantly predict three outcomes, namely
whether customers booked a trip otherwise not realized by train (additional
trip), bought a first-class rather than a second-class ticket (upselling), or
rescheduled their trip e.g. away from rush hours (demand shift). For this
purpose, we create three distinct datasets in which the values of the respective
binary outcome are balanced, i.e. 1 (for instance, upselling) for 50% and 0
(no upselling) for 50% of the observations. We balance our data because
we aim to train a model that predicts both outcome values equally well.
Taking the demand shift outcome as an example, our data with non-missing
covariate or outcome information contain 3481 observations with Y = 1 and
9576 observations with Y = 0. We retain all observations with Y = 1 and
randomly draw 3481 observations with Y = 0 to obtain such a balanced
data set. In the next step, we randomly split these 6962 observations into a
training set consisting of 75% of the data and a test set (25%). In the training
set, we train the random forest using the treatment D and all covariates X, W
as predictors. In the test set, we predict the outcomes based on the trained
forest, classifying e.g. observations with a demand shift probability ≥ 0.5 as
1. We then compare the predictions to the actually observed outcomes to
assess model performance based on the correct classification rate (also known
as accuracy), i.e. the share of observations in the test data for which the
predicted outcome corresponds to the actual one.

For each of the outcomes, Table 2 presents the 30 most predictive covari-
ates in the training set ordered in decreasing order according to a variable

6In Appendix A we present two tables showing the total and relative amount of supersaver
tickets offered and sold by the SBB in more detail.
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Table 1: Mean and standard deviation by discount and type

discount < 30% ≥ 30%
always buyers No Yes No Yes

discount 0.21 0.19 0.57 0.53
(0.07) (0.08) (0.12) (0.13)

regular ticket fare 44.36 36.14 47.19 32.91
(29.38) (25.47) (30.14) (23.78)

age 47.22 47.68 45.59 48.77
(15.36) (16.14) (15.80) (16.49)

gender 0.51 0.55 0.53 0.59
(0.50) (0.50) (0.50) (0.49)

diff. purchase travel 3.42 3.23 7.72 7.19
( 6.96) ( 6.76) (11.23) (10.30)

distance 136.49 127.86 126.15 116.76
(77.38) (71.49) (69.98) (66.04)

capacity utilization 35.51 39.19 26.46 33.15
(14.16) (14.31) (13.24) (13.75)

seat capacity 328.28 429.57 303.83 445.14
(196.19) (196.10) (185.42) (188.54)

offer total 33.95 44.10 70.97 98.34
(42.57) (50.68) (69.57) (84.45)

sold total 28.04 37.29 13.70 25.75
(41.92) (50.31) (36.37) (53.67)

half fare travel ticket 0.74 0.79 0.62 0.74
(0.44) (0.40) (0.49) (0.44)

leisure 0.77 0.69 0.82 0.76
(0.42) (0.46) (0.39) (0.43)

class 1.38 1.65 1.33 1.73
(0.48) (0.48) (0.47) (0.44)

Swiss 0.89 0.92 0.88 0.88
(0.31) (0.28) (0.33) (0.32)

demand shift 0.31 0.19 0.31 0.23
(0.46) (0.40) (0.46) (0.42)

upselling 0.49 0.00 0.49 0.00
(0.50) (0.00) (0.50) (0.00)

obs. 1151 2221 5529 3745

Notes: Regular ticket fare is in Swiss francs. ‘diff. purchase travel’ denotes the difference
between purchase and travel day. ‘Offer total’ and ‘sold total’ denote the total amount of
supersaver tickets offered and the total amount of supersaver tickets sold respectively.

importance measure. The latter is defined as the total decrease in the Gini



24

index (as a measure of node impurity in terms of outcome values) in a tree
when including the respective covariate for splitting, averaged over all trees in
the forest. The results suggest that trip- and demand-related characteristics
like seat capacity, utilization, departure time, and distance are important pre-
dictors. Concerning personal characteristics, also customer’s age appears to be
relevant. Furthermore, also the treatment intensity D has considerable predic-
tive power. Interestingly, specific connections (defined by indicators for points
of departure and destination) turn out to be less important characteristics
conditional on the other covariates already mentioned.

At the bottom of Table 2 we also report the correct classification rates
for the three outcomes. While the accuracy in predicting a demand shift
amounts to 58%, which is somewhat better than random guessing but not
particularly impressive, the performance is more satisfactory for predicting
decisions about additional trips with an accuracy of 65% and quite decent
for upselling (82%). We note that when predicting upselling, we drop the
variables ‘class’, which indicates whether someone travels in the first or second
class, and ‘seat capacity’, which refers to the capacity in the chosen class,
from the predictors. The reason is that upselling is defined as switching
from second to first class, and therefore, the chosen class and the related
seat capacities are actually part of the outcome to be predicted. Tables 18
and 17 in the Appendix E present the predictive outcome analysis separately
for subsamples with discounts ≥ 30% and < 30%, respectively. In terms
of which classes of variables are most predictive (trip- and demand-related
characteristics, age, discount rate) and also in terms of accuracy, the findings
are rather similar to those in Table 2. In general, machine learning appears
useful for forecasting customer behavior in the context of demand for train
trips, albeit not equally well for all aspects of interest. Such forecasts may for
instance serve as a base for customer segmentation, e.g. into customer groups
more and less inclined to book an additional trip or switch classes or departure
times, in order to specifically target them by particular interventions like
marketing campaigns.
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7.3 Testing the identification strategy

Before presenting the results for the causal analyses, we consider two different
methods to partially test the assumptions underlying our identification strat-
egy. First, we test Assumption 3 (weak monotonicity) by running the CF and
DML procedures as well as a conventional OLS regression in which we use buy-
ing an additional trip (1− S(0)), i.e. not being an always buyer, as outcome
variable and X as control variables in our sample of supersaver customers.
The CF permits estimating the conditional change in the share of surveyed
customers induced to buy an additional trip by modifying the discount rate D
given X, i.e.

∂E[(1−S(0))|D,X,S=1]
∂D , as well as the average thereof across X condi-

tional on sample selection, E
[

∂E[(1−S(0))|D,X,S=1]
∂D

∣∣∣S = 1
]
. DML, on the other

hand, yields an estimate of the average difference in the share of additional trips
across the high and low treatment categories conditional on sample selection,
E[E[(1− S(0))|D < 0.3, X, S = 1]− E[(1− S(0))|D ≥ 0.3, X, S = 1]|S = 1].
Finally, the OLS regression of (1− S(0)) on D and all X in our sample tests
monotonicity when assuming a linear model.

Table 3 reports the results that do not provide any evidence against the
monotonicity assumption. When considering the continuous treatment D,

the CF-based estimate of E
[

∂E[(1−S(0))|D,X,S=1]
∂D

∣∣∣S = 1
]

is highly statistically

significant and suggests that augmenting the discount by one percentage
point increases the share of customers otherwise not buying the ticket by 0.56
percentage points on average. Furthermore, any estimates of the conditional

change
∂E[(1−S(0))|D,X,S=1]

∂D are positive, as displayed in the histogram of Figure
2, and 82.2% of them are statistically significant at the 10% level, 69.1% at
the 5% level. Furthermore, the OLS coefficient of 0.544 is highly significant.
Likewise, the statistically significant DML estimate points to an increase
in the share of additional trips by 18.4 percentage points when switching
the binary treatment indicator from D < 0.3 to D ≥ 0.3. Taken at face
value, our main estimate of 0.56 implies that if the Swiss Federal Railways
offered a discount of 20% (instead of no discount), 11.2% additional trips
were booked. However, it is important to mention that these numbers must
be interpreted with great caution as they are based on a selective sample
of buyers of supersaver tickets and cannot be easily generalized to all (i.e.
regular fare and supersaver) single tickets purchased by the total of railway
customers. For this reason, our limited sample does not appear suitable for
conducting a general cost-benefit analysis for the supersaver tickets.

We also test the statistical independence of D and W conditional on X
in our sample of always buyers, as implied by our identifying assumptions,
see the discussion at the end of section 5. To this end, we randomly split the
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Table 3: Monotonicity tests

CF: av. change OLS: coef. DML: D ≥ 0.3 vs D < 0.3
change in (1− S(0)) 0.564 0.544 0.184

standard error 0.060 0.031 0.009
p-value 0.000 0.000 0.000

trimmed observations 1760
number of observations 12924

Notes: ‘CF’, ‘OLS’, and ‘DML’ stands for estimates based on causal forests, linear
regression, and double machine learning, respectively. ‘trimmed observations’ is the number
of trimmed observations in DML when setting the propensity score-based trimming threshold
to 0.01. Control variables consist of X.

Figure 2: Monotonicity given X

evaluation data into a training set (25% of observations) and a test set (75%
of all observations). In the training data set, we run a linear lasso regression
(Tibshirani, 1996) of D on X in order to identify important predictors by
means of 10-fold cross-validation. In the next step, we select all covariates
in X with non-zero lasso coefficients and run an OLS regression of D on the
selected covariates in the test data. Finally, we add W to that regression in
the test data and run a Wald test to compare the predictive power of the
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models with and without W. We repeat the procedure of splitting the data,
performing the lasso regression in the training set, and running the OLS
regressions and the Wald test in the test set 100 times. This yields an average
p-value of 0.226, with 15 out of 100 p-values being smaller than 5%. These
results do not provide compelling statistical evidence that W is associated
with D conditional on X, even though the training sample is relatively small
and thus favors selecting too few predictors in X (due to the cross-validation
that trades off bias due to including fewer predictors and variance due to
including more predictors).

We note that performing lasso-based variable selection and OLS-based
testing in different (training and test) data avoids correlations of these steps
that could entail an overestimation of the goodness of fit. Nonetheless, our
findings remain qualitatively unchanged when performing both steps in all of
the evaluation data. Repeating the cross-validation step for the lasso-based
covariate selection 100 times and testing in the total sample yields an even
higher average p-value of 0.360. Finally, we run a standard OLS regression of
D on all elements of X (rather than selecting the important ones by lasso) in
the total sample and compare its predictive power to a model additionally
including W. Also in this case, the Wald test entails a rather high p-value of
0.343. In summary, we conclude that our tests do not point to the violation
of our identifying assumptions.

7.4 Causal effect of discounts on demand shift

Table 4 presents the main results of our causal analysis, namely the estimates
of the discount rate’s effect on the demand shift outcome, which is equal
to one if the discount induced rescheduling the departure time and zero
otherwise. We note that all covariates, i.e. both the trip- or demand-related
factors X and the personal characteristics W, are used as control variables,
even though we have previously claimed that X is sufficient for identification.
There are, however, good reasons for including W as well in the estimations.
First, conditioning on the personal characteristics available in the data may
reduce estimation bias if X is - contrarily to our assumptions and to what
our tests suggest - not fully sufficient to account for confounding. Second, it
can also reduce the variance of the estimator, e.g. if some factors like age are
strong predictors of the outcome. Third, having W in the CF allows for a
more fine-grained analysis of effect heterogeneity based on computing more
‘individualized’ partial effects that (also) vary across personal characteristics.

Considering the estimates of the CF, we obtain an average partial effect
(APE) of 0.161, suggesting that increasing the current discount rate among
always buyers by one percentage point increases the share of rescheduled
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Table 4: Effects on demand shift

CF: APE DML: ATE D ≥ 0.3 vs D < 0.3
effect 0.161 0.038

standard error 0.072 0.010
p-value 0.025 0.000

trimmed observations 151
number of observations 5903

Notes: ‘CF’ and ‘DML’ stands for estimates based on causal forests, linear regression, and
double machine learning, respectively. ‘trimmed observations’ is the number of trimmed
observations in DML when setting the propensity score-based trimming threshold to 0.01.
Control variables consist of both X and W.

trips by 0.16 percentage points. This effect is statistically significant at the
5% level. As a word of caution, however, we point out that the standard
error is non-negligible such that the magnitude of the impact is not very
precisely estimated. When applying DML, we obtain an average treatment
effect (ATE) of 0.038 that is significant at the 1% level, suggesting that
discounts of 30% and more on average increase the number of demand shifts
by 3.8 percentage points compared to lower discounts, which is qualitatively
in line with the CF. Furthermore, we find a decent overlap or common support
in most of our sample in terms of the estimated propensity scores across
lower and higher discount categories considered in DML, see the propensity
score histograms in Appendix B. This is important as ATE evaluation hinges
on the availability of observations with comparable propensity scores across
treatment groups. Only 151 out of our 5903 observations are dropped due
to too extreme propensity scores below 0.01 or above 0.99 (pointing to a
violation of common support).7 In summary, our results clearly point to a
positive average effect of the discount rate on trip rescheduling among always
buyers, which is, however, not overwhelmingly large.

7.5 Demand shift: Effect heterogeneity

In this section, we assess the heterogeneity of the effects of D on Y across
interviewees and observed characteristics. Figure 3 shows the distribution the
CF-based conditional average effects (CAPE) of marginally increasing the
discount rate given the covariates values of the always buyers in our sample
(which are also the base for the estimation of the APE). While the CAPEs

7Our findings of a positive ATE remain robust when setting the propensity score-based
trimming threshold to 0.02 (ATE: 0.042) or 0.05 (ATE: 0.045).
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are predominantly positive, they are quite imprecisely estimated. Only 2.9%
and 0.8% of the positive ones are statistically significant at the 10% and 5%
levels, respectively. Further, only 0.1% of the negative ones are statistically
significant at the 10% level. Yet, the distribution points to a positive marginal
effect for most always buyers and also suggests that the magnitude of the
effects varies non-negligibly across individuals.

Figure 3: CAPEs on demand shift

Next, we assess the effect heterogeneity across observed characteristics
based on the CF results. First, we run a conventional random forest with
the estimated CAPEs as the outcome and the covariates as predictors to
assess the covariates’ relative importance for predicting the CAPE, using the
decrease in the Gini index as importance measure as also considered in section
7.2. Table 5 reports the 20 most predictive covariates ordered in decreasing
order according to the importance measure. Demand-related characteristics
(like seat capacity, utilization, departure time, and distance) turn out to be
the most important predictors for the size of the effects, also customer’s age
has some predictive power. Similarly as for outcome prediction in section 7.2,
specific connections (characterized by points of departure or destination) are
less important predictors of the CAPEs given the other information available
in the data.

While Table 5 provides information on the best predictors of effect hetero-
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Table 5: Most important covariates for predicting CAPEs on demand shift

covariate importance
seat capacity 11.844
offer level C 11.164

capacity utilization 5.144
departure time 5.122

distance 4.287
offer level D 4.015

class 3.434
saturday 2.933

age 2.429
number of sections 2.373

diff. purchase travel 2.110
offer level A 1.634
offer level B 1.610

half fare 1.524
scheme 17 1.496

half fare travel ticket 1.373
rel. sold level B 0.901

ticket purchase complexity 0.847
leisure 0.773

rel. sold level A 0.770

Notes: ‘Offer level A’, ‘offer level B’, ‘offer level C’ and ‘offer level D’ denote the amount
of supersaver tickets with discount A, B, C and D respectively. ‘Rel. offer level A’, ‘rel.
offer level B’ and ‘rel. offer level C’ denote the relative amount of supersaver tickets offered
with discount A, B and C. The relative amounts are in relation to the seats offered.

geneity, it does not give insights on whether effects differ importantly and
statistically significantly across specific observed characteristics of interest.
For instance, one question relevant for designing discount schemes is whether
(marginally) increasing the discounts is more effective among always buyers
so far exposed to rather small or rather large discounts. Therefore, we investi-
gate whether the CAPEs are different across our binary treatment categories
defined by D̃ (30% or more and less than 30%). To this end, we apply the
approach of Semenova and Chernozhukov (2020) based on (i) plugging the
CF-based predictions into a modified version of the doubly robust functions
provided within the expectation operator of (9) that is suitable for a con-
tinuous D and (ii) linearly regressing the doubly robust functions on the
treatment indicator D̃. The results are reported in the upper panel of Table 6.
While the point estimate of −0.104 suggests that the demand shifting effect
of increasing the discount is on average smaller when discounts are already
quite substantial (above 30%), the difference is far from being statistically
significant at any conventional level.

Using again the method of Semenova and Chernozhukov (2020), we also
investigate the heterogeneity among a limited and pre-selected set of covariates
that appears interesting for characterizing customers and their travel purpose,
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Table 6: Effect heterogeneity analysis for demand shift

effect st. err. p-value
Discounts categories (D ≥ 0.3 vs D < 0.3)

APE for D < 0.3 (constant) 0.209 0.089 0.019
Difference APE D ≥ 0.3 vs D < 0.3 (slope coef.) -0.104 0.122 0.395

Customer and travel characteristics
constant -0.154 0.295 0.602

age -0.002 0.004 0.556
gender -0.022 0.129 0.866

distance -0.000 0.001 0.697
leisure trip 0.297 0.165 0.072
commute 0.241 0.241 0.316

half fare travel ticket 0.228 0.142 0.109
peak hours 0.222 0.133 0.094

Notes: Business trip is the reference category for the indicators ‘leisure trip’ and ‘commute’.

namely age, gender, and travel distance, as well as indicators for leisure trip
and commute (with business trip being the reference category), traveling
during peak hours, and possession of a half fare travel tickets. As displayed in
the lower panel of Table 6, we find no important effect heterogeneities across
the age or gender of always buyers or as a function of travel distance conditional
on the other information included in the regression, as the coefficients on these
variables are close to zero. In contrast, the effect of demand shift is (given
the other characteristics) substantially larger among always buyers with a
half fare travel tickets and among commuters, however, neither coefficient is
statistically significant at the 10% level (even though the half fare coefficient
is close).

For leisure trips, the coefficient is even larger (0.297), suggesting that all
other included variables equal, a one percentage point increase in the discount
rate increases the share of rescheduled trips by 0.29 percentage points more
among leisure travelers than among always buyers traveling for business. The
coefficient is statistically significant at the 10% level, even though we point
out that the p-value does not account for multiple hypothesis testing of several
covariates. This finding can be rationalized by leisure travelers being likely
more flexible in terms of timing than business travelers. Also the coefficient on
peak hours is substantially positive (0.222) and statistically significant at the
10% level (again, without controlling for multiple hypothesis testing). This
could be due to peak hours being the most attractive travel time, implying
that custumers are more willing to reschedule their trips when being offered a
discount within peak hours. We conclude that even though several coefficients



7. Empirical results 33

appear non-negligible, statistical significance in our heterogeneity analysis is
overall limited, which could be due to the (for the purpose of investigating
effect heterogeneity) limited sample of several thousand observations.

7.6 Causal effect of discounts on customer satisfaction

To assess the effects of supersaver tickets on customer satisfaction, we use the
same causal approach as in the previous sections when evaluating the effects
on demand shift. Customer satisfaction is measured by the question What is
your overall impression of SBB?, which takes the values 1 (very bad) to 10
(very good), see Appendix C for more details. Table 7 presents the estimates
of the discount rate’s effect on the customer satisfaction based on CF and
DML. All covariates, i.e. both the trip- or demand-related factors X and the
personal characteristics W, are used as control variables.

Table 7: Effects on customer satisfaction

CF: APE DML: ATE D ≥ 0.3 vs D < 0.3
effect 0.248 0.159

standard error 0.249 0.037
p-value 0.320 0.000

trimmed observations 163
number of observations 5963

Notes: ‘CF’ and ‘DML’ stands for estimates based on causal forests, linear regression, and
double machine learning, respectively. ‘trimmed observations’ is the number of trimmed
observations in DML when setting the propensity score-based trimming threshold to 0.01.
Control variables consist of both X and W.

Considering the estimates of the CF, we obtain an average partial effect
(APE) of 0.248, suggesting that increasing the current discount rate among
always buyers by one percentage point increases the customer satisfaction
by 0.0025 points (on a 10-points scale).8 However, this small positive effect
is far from being statistically significant. When applying DML, we obtain
an average treatment effect (ATE) of 0.159 that is significant at the 1%
level, suggesting that discounts of 30% and more on average moderately
increase the customer satisfaction by 0.16 points compared to lower discounts.
Note that 163 out of our 5963 observations are dropped due to too extreme
propensity scores below 0.01 or above 0.99 (pointing to a violation of common

8The interpretation of the APE differs from those in the other analyses in that it is expressed
in points on a 10-points scale rather than percentage points.
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support). In summary, our results point to a positive, but rather minor effect
of discounts on customer satisfaction.

7.7 Satisfaction: Effect heterogeneity

Despite the non-significant APE in the previous section, we now turn to
assessing the heterogeneity of the effects of D on Y across always buyers
and observed characteristics. Figure 4 shows the distribution the CF-based
conditional average effects (CAPE) of marginally increasing the discount
rate given the covariates values of the always buyers in our sample (which
are also the basis for the estimation of the APE). While the CAPEs are
predominantly positive, they are quite imprecisely estimated. Only 3.1% and
1.0% of the positive ones are statistically significant at the 10% and 5% levels,
respectively. Yet, the distribution points to a positive marginal effect for most
always buyers.

Figure 4: CAPEs on satisfaction

Next, we assess the effect heterogeneity across observed characteristics
based on the CF results. First, we run a conventional random forest with
the estimated CAPEs as the outcome and the covariates as predictors to
assess the covariates’ relative importance for predicting the CAPE. Table
8 reports the 20 most predictive covariates ordered decreasingly according
to the importance measure. Similarly as for the demand shift outcome,
demand-related characteristics (like seat capacity, utilization, departure time,
and distance) turn out to be the most important predictors for the size of
the effects, also customer’s age has some predictive power. These variables
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are therefore relatively important for identifying different customer groups
in terms of a discount’s impact on customer satisfaction. Again, specific
connections (characterized by points of departure or destination) are less
important predictors of the CAPEs given the other information available in
the data, with the exception of the destination ’Geneva Airport’.

Table 8: Most important covariates for predicting CAPEs on satisfaction

covariate importance
capacity utilization 77.322

age 64.664
distance 52.699

departure time 48.849
distance 45.446

seat capacity 40.177
rel. sold level A 32.103

destination Geneva Airport 31.707
offer level B 28.395
offer level C 27.238

rel. amount imputed values 25.967
ticket purchase complexity 25.228

rel. sold level B 23.703
half fare travel ticket 23.535

offer level D 22.967
diff. purchase travel 21.231

offer level A 19.531
half fare 17.711

peak hour 14.856
imputed values 10.018

Notes: ’offer level A’, ’offer level B’, ’offer level C’ and ’offer level D’ denote the amount
of supersaver tickets with discount A, B, C and D respectively. ’Rel. offer level A’, and
’rel. offer level B’ denote the relative amout of supersaver tickets offered with discount A,
B and C. The relative amounts are in relation to the seats offered.

While Table 8 provides information on the best predictors of effect hetero-
geneity, it does not give insights on whether effects differ importantly and
statistically significantly across specific observed characteristics of interest.
For instance, one relevant question for designing discount schemes is whether
(marginally) increasing the discounts is more effective among always buy-
ers so far exposed to rather small or rather large discounts. Therefore, we
investigate whether the CAPEs are different across our binary treatment
categories defined by D̃ (30% or more and less than 30%). To this end, we
again apply the approach of Semenova and Chernozhukov (2020). The results
are reported in the upper panel of Table 9. While the point estimate of
−0.104 suggests that the effect on customer satisfaction of increasing the
discount is on average smaller when discounts are already quite substantial
(above 30%), the difference is far from being statistically significant at any
conventional level.
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Table 9: Effect heterogeneity analysis for satisfaction

effect st. err. p-value
Discounts categories (D ≥ 0.3 vs D < 0.3)

APE for D < 0.3 (constant) 0.209 0.089 0.019
Difference APE D ≥ 0.3 vs D < 0.3 (slope coef.) -0.104 0.122 0.395

Customer and travel characteristics
constant 0.937 1.066 0.380

age -0.001 0.015 0.963
gender -0.628 0.452 0.165

distance 0.001 0.004 0.885
leisure trip 0.485 0.601 0.420
commute 0.746 0.859 0.385

half fare travel ticket -0.919 0.525 0.080
peak hours 0.479 0.487 0.325

Notes: Business trip is the reference category for the indicators ‘leisure trip’ and ‘commute’.

Using again the method of Semenova and Chernozhukov (2020), we also
investigate the heterogeneity among a limited and pre-selected set of covariates
that appears interesting for characterizing customers and their travel purpose,
namely age, gender, and travel distance, as well as indicators for leisure trip
and commute (with business trip being the reference category), traveling
during peak hours, and possession of a half fare travel tickets. As displayed
in the lower panel of Table 9, we find no important effect heterogeneities
across the age or the travel distance among always buyers conditional on
the other information included in the regression, as the coefficients on these
variables are close to zero. Different, the effect is positive for commuter,
leisure travelers and peak hour. However, neither coefficient is statistically
significant at the 10% level. In contrast, the effect on customer satisfaction is
(given the other characteristics) lower among always buyers with a half fare
travel tickets and for men. However, only the effect of half fare travel tickets
is statistically significant at the 10% level.

7.8 Effect of discounts on upselling

In this and the following section, we discuss the effects of discounts on
upselling behavior. The latter are individuals upgrading their second-class
to a first-class ticket. In the previous use cases, we defined always buyers
as individuals that would even have traveled at the regular fare and in the
same class. We now drop the latter constraint from our sample definition and
permit individuals switching from the second to the first class to be part of
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the subgroup of always buyers too (as long as they would have bought the trip
without discount). This, however, reduces the credibility of the assumptions
required for causal analysis, as our evaluation is now based on individuals
that are likely more dissimilar in terms of buying behavior than those not
switching the travel class. Indeed, we find that our previously discussed
test of the selection on observables assumption, namely that W must not
be associated with D conditional on X, fails for this sample definition, see
Appendix D (which also provides the results for the monotonicity test that
among all survey respondents the share of additional trips must increase in the
discount rate). Such a selection bias could be circumvented in future studies
by surveying a random sample of individuals (not only buyers of supersaver
tickets) and randomizing the discounts by means of an experiment.

Table 10: Effects on upselling

CF: APE DML: ATE D ≥ 0.3 vs D < 0.3
effect 0.589 0.163

standard error 0.031 0.008
p-value 0.000 0.000

trimmed observations 774
number of observations 9422

Notes: ‘CF’ and ‘DML’ stands for estimates based on causal forests, linear regression, and
double machine learning, respectively. ‘trimmed observations’ is the number of trimmed
observations in DML when setting the propensity score-based trimming threshold to 0.01.
Control variables consist of both X and W.

Table 10 presents the effect estimates based on CF and DML when using
both trip- or demand-related factors X and the personal characteristics W as
control variables. However, note that the covariates ‘class’ and ‘seat capacity’
are not included. The reason is that these variables are directly related to the
outcome of interest, because every individual upgrading her ticket rides first
class, while seat capacity refers to a specific class (1st or 2nd). Considering
the estimates of the CF, we obtain an average partial effect (APE) of 0.589,
suggesting that increasing the current discount rate among always buyers
(new definition) by one percentage point increases the share of tickets being
upgraded by 0.59 percentage points. This effect is substantially higher than
that for demand shift (0.161) and statistically significant at the 1% level.
When applying DML, we obtain an average treatment effect (ATE) of 0.163,
which is also significant at the 1% level. It suggests that discounts of 30% and
more on average increase the number of demand shifts by 16.3 percentage
points compared to lower discounts, which is qualitatively in line with the
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CF. Again, it is substantially higher than the effect on demand shift (0.038).
Common support appears acceptable for most of our sample in terms of
the estimated propensity scores across lower and higher discount categories
considered in DML: 774 out of our 5903 observations are dropped due to too
extreme propensity scores below 0.01 or above 0.99 (pointing to a violation
of common support). In summary, our results clearly point to a positive
average effect of the discount rate on trip rescheduling among always buyers
if taken at face value. However, we bear in mind that these effects might be
substantially biased as the assumptions underlying our causal analysis are
likely to be violated.

7.9 Upselling: Effect heterogeneity

In this section, we assess the heterogeneity of the effects of D on Y across
interviewees and observed characteristics. Figure 5 shows the distribution the
CF-based conditional average effects (CAPE) of marginally increasing the
discount rate given the covariates values of the newly defined always buyers
in our sample. We see that the CAPEs are predominantly positive and that
the magnitude of the effects varies non-negligibly across individuals.

Next, we assess the effect heterogeneity across observed characteristics
based on the CF results. First, we run a conventional random forest with the
estimated CAPEs as the outcome and the covariates as predictors to assess
the covariates’ relative importance for predicting the CAPE, using again the
decrease in the Gini index as importance measure. Table 11 reports the 20
most predictive covariates in decreasing order according to the importance
measure. Demand-related characteristics (like utilization, departure time,
and distance) turn out to be the most important predictors for the size of the
effects, also customer’s age has some predictive power. As in our previous
heterogeneity analyses, particular connections are less important predictors
of the CAPEs given the other information available in the data.
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Figure 5: CAPEs for upselling
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Table 11: Most important covariates for predicting CAPEs on upselling

covariate importance
capacity utilization 83.686

age 15.596
offer level C 13.407

departure time 10.518
distance 7.734

offer level B 7.454
Saturday 4.185
half fare 4.156

offer level A 3.842
scheme 20 3.654

offer level D 2.988
diff. purchase travel 2.907
half fare travel ticket 2.535

number of sub-journeys 2.245
rel. sold level A 2.093
rel. sold level B 1.902

peak hours 1.744
ticket purchase complexity 1.555

scheme 6 1.458
rel. amount imputed values 1.231

Notes: ’offer level A’, ’offer level B’, ’offer level C’ and ’offer level D’ denote the amount
of supersaver tickets with discount A, B, C and D respectively. ’Rel. offer level A’ and ’rel.
offer level B’ denote the relative amount of supersaver tickets offered with discount A and
B. The relative amounts are in relation to the seats offered. ’Diff. purchase travel’ denotes
the difference between purchase and travel day.

While Table 11 provides information on the best predictors of effect
heterogeneity, it does not give insights on whether effects differ importantly
and statistically significantly across specific observed characteristics of interest.
Similarly to our previous analyses on effect heterogeneity, we investigate
whether the CAPEs are different across our binary treatment categories
defined by D̃ (30% or more and less than 30%). To this end, we again apply
the approach of Semenova and Chernozhukov (2020) based on (i) plugging the
CF-based predictions into a modified version of the doubly robust functions
provided within the expectation operator that is suitable for a continuous
D and (ii) linearly regressing the doubly robust functions on the treatment
indicator D̃. The results are reported in the upper panel of Table 12. The
point estimate of −0.064 suggests that the upselling effect of increasing the
discount is on average smaller when discounts are already quite substantial
(above 30%). However, the difference is not statistically significant at any
conventional level.

Using again the method of Semenova and Chernozhukov (2020), we also
investigate the heterogeneity among a limited and pre-selected set of covariates
that appears interesting for characterizing customers and their travel purpose,
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Table 12: Effect heterogeneity analysis for upselling

effect st. err p-value
Discounts categories (D ≥ 0.3 vs D < 0.3)

APE for D < 0.3 (constant) 0.742 0.071 0.000
Difference APE D ≥ 0.3 vs D < 0.3 (slope coef.) -0.064 0.094 0.493

Customer and travel characteristics
constant 1.320 0.230 0.000

age -0.009 0.003 0.002
gender -0.062 0.099 0.528

distance 0.001 0.001 0.350
leisure trip -0.034 0.154 0.827
commute -0.170 0.196 0.386

half fare travel ticket -0.220 0.107 0.040
peak hours -0.064 0.107 0.548

Notes: Business trip is the reference category for the indicators ‘leisure trip’ and ‘commute’.

namely age, gender, and travel distance, as well as indicators for leisure trip
and commute (with business trip being the reference category), traveling
during peak hours, and possession of a half fare travel tickets. As displayed
in the lower panel of Table 12, we find a negative and significant effect of age,
conditional on the other information included in the regression. Further, we
see that the possession of a half fare travel ticket has a negative effect on
upselling. This coefficient is statistically significant at the 5% level (again,
without controlling for multiple hypothesis testing). We find no other effect
heterogeneities being significant at the 10% level.

8 Conclusion

In this study, we applied causal and predictive machine learning to assess
the effects of discounts on train tickets issued by the Swiss Federal Railways
(SBB), the so-called ‘supersaver tickets’, in four use cases. Our study is based
on unique data that combines a survey of supersaver customers with rail trip-
and demand-related information provided by the SBB.

In use case (i), we analyzed which customer- or trip-related characteristics
(including the discount rate) are predictive for three outcomes characterizing
buying behavior, namely: booking a trip otherwise not realized by train
(additional trip), buying a first- rather than second-class ticket (upselling), or
rescheduling a trip (e.g. a demand shift away from rush hours) when being
offered a supersaver ticket. The random forest-based results suggested that
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customer’s age, demand-related information for a specific connection (like
seat capacity, departure time, and utilization), and the discount level permit
forecasting buying behavior to a certain extent, with correct classification
rates amounting to 58% (demand shift), 65% (additional trip), and 82%
(upselling), respectively.

As predictive machine learning cannot provide the causal effects of the
predictors involved, we applied causal machine learning to assess the causal
impact of the discount rate on buying behavior. In particular, in use case (ii),
we investigated the effect of discounts on demand shift among always buyers
who would have traveled even without a discount in the same travel class. This
appears interesting in the light of capacity constraints at rush hours. To this
end, we invoked the identifying assumptions that (a) the discount rate is quasi-
random conditional on our covariates and (b) the buying decision increases
weakly monotonically in the discount rate and exploited survey information
about customer behavior in the absence of discounts. We also considered two
approaches for partially testing our assumptions, which did not point to a
violation of the latter. Our main results based on the causal forest suggested
that increasing the discount rate by one percentage point entails an average
increase of 0.16 percentage points in the share of rescheduled trips among
always buyers. This finding was corroborated by double machine learning
with just two discount categories, suggesting that discount rates of 30% and
more on average increase the share of rescheduled trips by 3.6 percentage
points compared to lower discounts. Furthermore, when investigating effect
heterogeneity across a pre-selected set of characteristics, we found the causal
forest-based effects to be higher (with marginal statistical significance when
not controlling for multiple hypothesis testing) for leisure travelers and during
peak hours when also controlling for customer’s age, gender, possession of
a half fare travel card, and travel distance. Finally, our effect heterogeneity
analysis also revealed that demand-related information is most predictive for
the effect of the discount rate.

In use case (iii), we assessed the causal effect of discounts on customer
satisfaction, again among always buyers and based on the same identifying
assumptions as in the second use case. We found that increasing the discount
rate has a relatively small positive effect on customer satisfaction. However,
the effect was only statistically significant when applying double machine
learning with a binary treatment (and not when considering the causal forest).
Investigating effect heterogeneity across observables suggested that the effects
are lower among always buyers with a half-fare travel ticket.

Finally, use case (iv) concerned the effect of supersaver tickets on upselling,
i.e., purchasing a first-class rather than a second-class ticket, using a more
lenient definition always buyers that permitted for changes in the travel
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class. Applying the causal forest suggested that increasing the discount by
1 percentage point increases the share of tickets being upgraded by 0.59
percentage points. Investigating effect heterogeneity across a pre-selected
characteristics pointed to lower effects among elderly and those customers
possessing a half-fare ticket. However, due to the more lenient definition
of always buyers, the assumptions required for the identification of causal
effects are likely violated. Therefore, our findings in use case (iv) need to be
interpreted with caution, as the estimates might be substantially biased.

Using state-of-the art machine learning tools, our study appears to be the
first (at least for Switzerland) to provide empirical evidence on how discounts
on train tickets affect customers’ willingness to reschedule trips. These insights
may be helpful for designing discount schemes aiming at balancing out train
utilization across daytime and reducing overload during peak hours. Even
though the overall impact on the demand shifts on always buyers might not
be as large as one could hope for, the causal forest pointed to the existence of
customer segments that are likely more responsive and could be scrutinized
when collecting a larger amount of data than available for our analysis. In
addition, our study is the first to provide empirical results on how discounts
affect customer satisfaction and upselling related to train trips in Switzerland,
as well as on the prediction of various aspects of customer behavior. More
generally, our study can be regarded as use cases for how predictive and
causal machine learning can also be fruitfully applied for business analytics
and as decision support for optimizing specific interventions like discount
schemes based on impact evaluation. Future studies would ideally aim not
only for a larger, but also a more representative survey covering also buyers
of regular (rather than supersaver) tickets and could in addition rely on a
random assignment of discounts by means of an experiment in order to avoid
the previously mentioned selection issues.
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Appendix

A Statistics on offered and sold supersaver tickets

This section provides two tables on the total and relative amount of supersaver
tickets offered and sold by the SBB. While these descriptive statistics give an
overview of the supply of discounted tickets, they must be interpreted with caution.
In particular, they represent averages at the time of purchase of the individuals in
our survey-based sample and not the average of the entire supply. The offers of
supersaver tickets, which change over time (become smaller), always refer to the time
of purchase. The number of tickets sold is calculated based on information about a
customers’ discount (according to the survey data) and the offered discounts within
specific discount levels (according to factors determining the supply of supersaver
tickets). The latter is indexed by A to E depending on the discount level, differing
(slightly) between half-fare and full-fare travelers. The index is in descending order.
For instance, A denotes the highest possible discount of 70% on the standard
ticktet price. On the other hand, E denotes the lowest possible discount being
10% and 20% for half-fare and full-fare travelers, respectively. Table 13 gives the
absolute numbers of discounts and Table 14 the relative shares by discount level and
customer type (i.e. always buyers: yes or no). For instance, we see in Table 13 that
the SBB offers on average a total of 98.34 supersaver tickets when an individual’s
discount is higher than or equal to 30% and the individual is an always buyer. This
offer represents 22% of all seats (Table 14).
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Table 13: Mean and standard deviation of numbers of supersaver tickets
offered and sold by discount level and customer type

discount < 30% ≥ 30%
always buyers No Yes No Yes

offer total 33.95 44.10 70.97 98.34
(42.57) (50.68) (69.57) (84.45)

offer sold total 28.04 37.29 13.70 25.75
(41.92) (50.31) (36.37) (53.67)

offer level A 10.80 14.02 31.76 40.76
(29.36) (37.89) (54.90) (70.28)

offer level B 10.26 13.53 23.59 34.61
(22.30) (25.81) (35.33) (45.75)

offer level C 8.14 10.10 11.42 16.99
(14.05) (15.95) (17.27) (21.90)

offer level D 3.88 5.40 3.51 5.14
(6.66) (9.15) (7.13) (9.39)

offer level E 0.87 1.05 0.69 0.85
(2.61) (3.02) (2.37) (2.80)

sold level A 10.80 14.02 10.13 18.74
(29.36) (37.89) (31.92) (46.84)

sold level B 10.26 13.53 2.55 5.77
(22.30) (25.81) (12.66) (21.06)

sold level C 5.35 7.24 1.01 1.23
(11.96) (14.22) ( 6.13) ( 6.69)

sold level D 1.57 2.28 0.00 0.00
(4.56) (6.37) (0.00) (0.00)

sold level E 0.05 0.22 0.00 0.00
(0.53) (1.38) (0.00) (0.00)

Obs. 1151 2221 5529 3745

Notes: ’Offer level A’ denotes the number of offered supersaver tickets with discount level
A. ’Sold level A’ denotes the number of supersaver tickets sold with discount level A.
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Table 14: Mean and standard deviation of shares of supersaver tickets offered
and sold by discount level and customer type

discount < 30% ≥ 30%
always buyers No Yes No Yes

rel. offer total 0.11 0.10 0.24 0.22
(0.11) (0.11) (0.17) (0.16)

rel. sold total 0.09 0.09 0.04 0.06
(0.11) (0.11) (0.10) (0.12)

rel. sold level A 0.04 0.03 0.11 0.10
(0.10) (0.09) (0.18) (0.15)

rel. offer level B 0.03 0.03 0.08 0.08
(0.05) (0.05) (0.08) (0.09)

rel. offer level C 0.02 0.02 0.04 0.04
(0.04) (0.03) (0.05) (0.04)

rel. offer level D 0.01 0.01 0.01 0.01
(0.02) (0.02) (0.02) (0.02)

rel. offer level E 0.00 0.00 0.00 0.00
(0.01) (0.01) (0.01) (0.01)

rel. sold level A 0.04 0.03 0.03 0.04
(0.10) (0.09) (0.09) (0.10)

rel. sold level B 0.03 0.03 0.01 0.01
(0.05) (0.05) (0.03) (0.04)

rel. sold level C 0.02 0.02 0.00 0.00
(0.03) (0.03) (0.01) (0.01)

rel. sold level D 0.00 0.01 0.00 0.00
(0.01) (0.01) (0.00) (0.00)

rel. sold level E 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00)

Obs. 1151 2221 5529 3745

Notes: ’Rel. offer level A’ denotes the share of supersaver tickets offered with discount
level A. ’Rel. sold level A’ denotes the share of supersaver tickets sold with discount level
A. The shares are relative to the seats offered.
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B Propensity score plots

Figure B.1: Propensity score estimates in the higher discount category (
D ≥ 0.3)

Figure B.2: Propensity score estimates in the lower discount category (D <
0.3)



48

C Descriptive statistics for customer satisfaction

Thsi section presents descriptive statistics for the survey question What is your
overall impression of SBB? The variable takes values from 1 (very bad) to 10 (very
good). Table 15 shows the mean and standard deviation by discount categories
and customer type (always buyers: yes or no). In general, the survey participants
are quite satisfied, with the highest average satisfaction occurring among discounts
≥ 30% and for always buyers (albeit differences across groups are generally small).

Table 15: Mean and standard deviation of satisfaction with SBB by discount
level and type

discount < 30% ≥ 30%
always buyers No Yes No Yes

customer satisfaction 7.40 7.62 7.74 7.86
(1.73) (1.54) (1.62) (1.51)

Obs. 1151 2221 5529 3745

Note: Customer satisfaction is based on a scale from 1 (very bad) to 10 (very good).

D The effect on upselling: testing the identification

strategy

As for the use cases (ii) and (iii), we consider two different methods to partially
test the assumptions underlying our identification strategy when assessing the
discounts’ effects on upselling based on the modified definition of always buyers.
First, we test weak monotonicity (Assumption 3) by running the causal forest (CF)
and double machine learning (DML) procedures as well as a conventional OLS
regression in which we use buying an additional trip (1− S(0)), i.e. not being
an always buyer, as outcome variable and X as control variables in our sample
of supersaver customers. The CF permits estimating the conditional change in
the share of surveyed customers induced to buy an additional trip by modifying

the discount rate D given X, i.e.
∂E[(1−S(0))|D,X,S=1]

∂D , as well as the average thereof

across X conditional on sample selection, E
[

∂E[(1−S(0))|D,X,S=1]
∂D

∣∣∣S = 1
]
. DML, on

the other hand, yields an estimate of the average difference in the share of additional
trips across the high and low treatment categories conditional on sample selection,
E[E[(1 − S(0))|D < 0.3, X, S = 1] − E[(1 − S(0))|D ≥ 0.3, X, S = 1]|S = 1].
Finally, the OLS regression of (1 − S(0)) on D and all X in our sample tests
monotonicity when assuming a linear model.

Table 16 reports the results that do not provide evidence against the mono-
tonicity assumption. When considering the continuous treatment D, the CF-based
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estimate of E
[

∂E[(1−S(0))|D,X,S=1]
∂D

∣∣∣S = 1
]

is highly statistically significant and sug-

gests that augmenting the discount by one percentage point increases the share of
customers otherwise not buying the ticket by 0.207 percentage points on average.
However, this is only about half of the magnitude when compared to the original
definition of always buyers (0.56). Any (almost all) estimates of the conditional

change
∂E[(1−S(0))|D,X,S=1]

∂D are positive, as displayed in the histogram of Figure
D.1, and 21.1% of them are statistically significant at the 10% level, 11.2% at the
5% level. Also the OLS coefficient of 0.291 is highly significant, but also lower
than for the original definition of always buyers (0.544). Likewise, the statistically
significant DML estimate points to an increase in the share of additional trips by
8.4 percentage points when switching the binary treatment indicator from D < 0.3
to D ≥ 0.3.

Table 16: Monotonicity tests

CF: av. change OLS: coef. DML: D ≥ 0.3 vs D < 0.3
change in (1-S(0)) 0.207 0.236 0.084

standard error 0.061 0.028 0.008
p-value 0.001 0.000 0.000

trimmed observations 1826
number of observations 12924

Notes: ‘CF’, ‘OLS’, and ‘DML’ stands for estimates based on causal forests, linear
regression, and double machine learning, respectively. ‘trimmed observations’ is the number
of trimmed observations in DML when setting the propensity score-based trimming threshold
to 0.01. Control variables consist of X.

We also test the statistical independence of D and W conditional on X in our
newly defined sample of always buyers, as implied by our identifying assumptions.
To this end, we randomly split the evaluation data into a training set (25% of
observations) and a test set (75% of all observations). In the training data set,
we run a linear lasso regression (Tibshirani, 1996) of D on X in order to identify
important predictors by means of 10-fold cross-validation. In the next step, we
select all covariates in X with non-zero lasso coefficients and run an OLS regression
of D on the selected covariates in the test data. Finally, we add W to that regression
in the test data and run a Wald test to compare the predictive power of the models
with and without W. We repeat the procedure of splitting the data, performing the
lasso regression in the training set, and running the OLS regressions and the Wald
test in the test set 100 times. This yields an average p-value of 0.091, with 48 out
of 100 p-values being smaller than 5%. These results provide statistical evidence
that W might be associated with D conditional on X. Therefore, the causal effects
of the discounts on upselling should be interpreted with much caution.
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Figure D.1: Monotonicity given X
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E Predictive outcome analysis separately for sub-

samples

The Tables 18 and 17 present the predictive outcome analysis separately for
subsamples with discounts ≥ 30% and < 30%, respectively.
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