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1 Management Summary

Public transportation in general and railways in particular exhibit a great extent of
scale economies. This renders railway infrastructure a natural monopoly, usually owned
and managed by the state or a state-owned infrastructure company. The substantial
amount of subsidies raises the need for means to ensure that taxpayers’ money is used
efficiently. Typically, railway infrastructure construction and maintenance are procured
using competitive procedures such as auctions. These auctions fulfill their purpose of
allocating public resources efficiently—unless bidders collude.

In the study at hand, we aim to detect collusion by looking at the distribution of
bids for a unique series of procurement tenders provided by the Swiss Federal Railways.
What makes a distribution of bids suspicious? We let past data answer this question. By
courtesy of the Swiss Competition Commission, we have access to structurally very similar
procurement data relating to resemblant industries such as road construction and civil
engineering. Unless in the case of the railway-infrastructure data, however, we know about
the existence of convicted bid-rigging cartels in these instances. That is, we likewise observe
bid distributions but can also pin down the tenders where a cartel was involved—and
where not. Therefore, we can use this data to feed so-called supervised machine-learning
algorithms, which in turn determine the likelihood of the presence of a potential cartel in
any set of comparable data.

We employ machine learning in two different ways. In the first instance, which we call
the centralized approach, we assume that the railway-infrastructure firm (the procuring
company) is in possession of the entirety of the bid-distribution data in question. In the
second instance, which we call the decentralized approach, tenders are separately classified
by independent so-called category managers directly when receiving the firms’ bids.

In both approaches, data requirements are minimal. All we need to observe are the
bids submitted by the firms in a procurement auction. The distributions of these bids
constitute a set of predictor variables or ”screens”. Examples are the spread, the difference
between the two lowest bids, and many more. As it turns out (and as is expected), the
most important of these screens is the coefficient of variation, which decreases in periods
when a cartel is active. Using the past data of the Swiss Competition Commission, we
apply supervised machine learning where the outcome of interest (the binary variable which
determines the presence of a potential cartel) is also known. Hence, we can utilize a portion
of the data to assess the performance of our models (by means of the correct-classification
rate and the F1 validation score).

In the centralized approach, we make use of established machine-learning algorithms in
the literature on algorithm-based cartel detection. Whilst fitting our models, we learn that
the ”super learner”—a weighted average of multiple machine-learning algorithms—performs
the best. However, since the model’s performance partially depends on the training and
test sets composition, we also perform bootstrap prediction intervals (by randomly drawing
a multitude of these sets). We find that the ”random forest”—a comparatively simple
algorithm derived from repeatedly applying classification trees to balance between bias
and variance—is equally well suited in the present context.

In the decentralized approach, we take the everyday perspective of a category manager
who typically has insight into only a limited number of bid distributions (and has a plethora
of other tasks to manage). Therefore, a simple ”category manager’s tool” in the shape of
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a stable decision tree is helpful. Along the decision tree, the category manager classifies
tenders according to benchmarks for the respective screens. As in the centralized approach,
we apply machine learning to determine the selection and optimal amount of screens
(decision nodes). It happens that the optimal decision tree is not bushy at all: It simply
suggests that whenever the coefficient of variation of the bid distribution is below 0.053,
a tender should be treated as suspicious to maximize correct classification. Somewhat
surprisingly, we find that our basic tool is virtually equally performant as the more opaque
algorithms of the centralized approach.

We apply the centralized and decentralized approaches to classify 1,206 railway-
infrastructure tenders in Switzerland between 2015 and 2021. All in all, about 10 percent of
these tenders are rated ”suspicious”; thereof, we classify only a quarter as ”very suspicious”
(i.e., exceeding a probability threshold of indicating an active cartel of 0.7). We then use
additional information to examine subsets of our data in greater detail. For instance, we
identify the region of Ticino to be more prone to suspicious bidding behavior—albeit at a
moderate level. Regarding the procurement procedure (”open” versus ”on invitation”), we
do not find any striking differences. Finally, we study clusters of firms that repeatedly
coincide in suspicious tenders. We identify two groups of firms whose interactions are
indicative of a cartel in more than 20 percent of the instances and, therefore, worth further
scrutiny. However, the thing to notice is that even this finding should be taken with a
grain of salt, as it represents a small number of suspicious tenders.

In the course of some supplementary analysis, we study the relation between the
cost estimates of the Swiss Federal Railways and some key statistics of suspicious and
inconspicuous tenders. We do not find any clear-cut patterns. Moreover, we take a deep
dive into the interaction of firms. Specifically, we include their subsidiaries into their
parent companies, which increases the number of tenders per firm and, thus, the potential
to detect collusive behavior. Whereas the interaction between firms remains relatively
unsuspicious, we find some firms (including their subsidiaries) which are worthwhile looking
at themselves.

In summary, we do not detect any major anomalies indicating bid rigging. However, we
recommend that the Swiss Federal Railways pursue screening methods further in the future.
For example, from the authors’ point of view, our decentralized approach can simply be
integrated into Swiss Federal Railway’s supplier management. Also, repeating the study in
a few years with new data and newly trained models makes sense. Furthermore, regarding
the repetition of the study, we recommend that Swiss Federal Railways automatically
prepare the data in advance, which can also be the basis for implementing the centralized
approach. Finally, a policy recommendation is to communicate this study’s results to deter
potential cartels actively.

2 Introduction

According to recent OECD data, investment in railway infrastructure in 2019 by 23 of
the 27 countries of the European Union amounted to EUR 38,3 bn.1 France (EUR 10,8
bn) and Germany (EUR 9.6 bn) alone are responsible for around half of this amount
(International Transport Forum, 2022). There are several reasons why investment in

1See https://data.oecd.org/transport/infrastructure-investment.htm (accessed on September 19, 2022)
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railway infrastructure (mainly construction but also maintenance) could increase in the
near future. For example, the European Union has established a new action plan to boost
long-distance and cross-border passenger rail to foster sustainable mobility (European
Commission, 2021). Furthermore, the trend towards intermodal and multi-modal mobility
requires corresponding facilities such as transport hubs and IT systems such as digital
platforms (Montero and Finger, 2020).

Public transportation in general and railways in particular exhibit a great extent of
scale economies. This renders railway infrastructure a natural monopoly (Crozet, Nash,
and Preston, 2012). Usually, infrastructure is owned and managed by a state-owned
infrastructure company or a separate infrastructure division of a state-owned transport
company (Finger, 2014). The accordingly substantial public subsidies involved (see, e.g.,
Finger, 2014, Montero and Finger, 2020) raise the need for means to ensure that the
taxpayers’ money is used efficiently. In the wake of liberalization of the public sector
in general and of the railway sector in particular, many infrastructure companies were
compelled to start procuring construction and maintenance using competitive procurement
procedures such as auctions (Laffont and Tirole, 1993).

This is supposed to ensure efficient use of (partially) public money. However, as common
to procurement auctions, concerns regarding bid-rigging appear (Lengwiler and Wolfstetter,
2006). Therefore, and because of the large amount of public money involved, infrastructure
companies and their regulators have a vital interest in preventing unlawful cooperation
of firms applying for projects. Detecting collusive arrangements is an indispensable first
step in fighting cartels. In order not to rely heavily on external sources—such as principal
witnesses in leniency programs—researchers have proposed statistical methods to screen
markets to detect possible patterns of a cartel (see, e.g., Porter and Zona, 1993, Harrington,
2008).

To the best of our knowledge, none of the existing studies focus on approaches designed
for detecting potential cartel behavior in the railway-infrastructure industry. We aim
to fill this gap by presenting two complementary approaches to detect potential illegal
supplier cartels. Both of these approaches are related to cartel screening using machine
learning (for a review see, e.g., Harrington and Imhof, 2022), where algorithms ”learn” to
predict the presence or absence of a cartel. First, we directly apply machine-learning based
algorithms to a pooled database with many projects previously put to tender (centralized
approach). Second, we showcase a tool created specifically for category managers of
railway-infrastructure companies (decentralized approach). With the tool, a category
manager can directly (live) monitor potential bid-rigging in his or her individual tenders by
benchmarking descriptive statistics with critical values. Thereby, we use machine learning
to select the relevant statistics and their critical values.

As an illustration for ex-ante cartel screening in the railway-infrastructure industry, we
apply both approaches to the Swiss context by using unique procurement data provided
by the Swiss Federal Railways, for which a cartel’s incidence is unknown. The data set
consists of 1,818 tenders, mainly from 2016 to 2021. We classify a (rather low) share
of between 2.6% and 10.9% of all tenders as suspicious, depending on which approach
and, more specifically, which decision threshold (i.e., probability threshold) of machine-
learning algorithms we apply (0.5 and 0.7, respectively). We then present several further
investigations of the ”suspicious” tenders, an exercise of potentially direct practical use,
as railway-infrastructure companies can use our investigation steps to explore their own
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markets. Note that, before applying either approach, we develop models using past data
from investigations by the Swiss Competition Commission (see also Wallimann, Imhof,
and Huber, 2022, Imhof, 2019). We find that we correctly classify a tender in 80% of
the cases. Furthermore, the 95% prediction interval for correct classification (potential
collusion or no collusion, respectively) reaches from 70% to 90%.

We proceed as follows. In Section 3, we present the relevant literature on screening
methods. In Section 4, we discuss our cartel-detection approaches and their application
to railway infrastructure in general. In Section 5, we adapt them to the Swiss railway-
infrastructure market. In Section 6, we screen this market for cartel-like bidding patterns
using unique procurement data provided by the Swiss Federal Railways. In Section 8,
we discuss our results and argue that the external validity is likely to be given—i.e., the
market structures in the cases from the Swiss Competition Commission and our application
are comparable. In Section 7, we provide some supplementary analysis. In Section 9, we
conclude.

3 Literature review on screening methods

Our work is related to studies discussing pro-active statistical methods to detect potential
cartels, initially proposed by, for instance, Harrington (2008) and Porter and Zona (1993).
These so-called screening methods constitute the first step of a multi-phase process that
finally may condemn illegally cooperating firms. From an empirical perspective, screening
methods are applied in the presence of ”prediction policy problems” (Kleinberg, Ludwig,
Mullainathan, and Obermeyer, 2015). That is, researchers aim to predict the probability
of a cartel. As we use bidding patterns in procurement auctions to identify potential
cartels, we focus on price screens in this review section. Moreover, our main attention is
on behavioral screens, observing firms’ behavior in markets. This is opposed to structural
screens, which identify markets with typical cartel-conducive traits such as a small number
of bidders (Harrington, 2008). Note that the German Railways use structural screens to
identify markets prone to cartels (see, e.g., Beth and Gannon, 2022).

As we show in Section 5, we find that the coefficient of variation, defined as the
standard deviation divided by the arithmetic mean of all bids submitted in an auction,
is highly predictive in terms of determining the presence of a potential cartel. This fits
the body of literature that uses screens to analyze the variance of bids: Several studies
(e.g., Abrantes-Metz, Froeb, Geweke, and Taylor, 2006, Jimenez and Perdiguero, 2012,
Imhof, 2019) point out that the coefficient of variation decreases during periods in which
a cartel is active. Other studies find that cartel-involved behavior is often accompanied
by asymmetrical bidding distributions. Recent findings from Japan (Chassang, Kawai,
Nakabayashi, and Ortner, 2022), Canada (Clark, Coviello, Gauthier, and Shneyerov, 2018),
and Switzerland (Imhof, Karagök, and Rutz, 2018) show that winning bids tend to be
isolated; that is, the difference between the first- and second-lowest bids of a cartel is
relatively high compared to differences among losing bids.

In the past five years, the literature in the context of cartel screens has largely focused
on the use of machine learning, a subfield of artificial intelligence (OECD, 2022). It
seems promising in light of the wide-scale use of digitization in procurement processes.
The corresponding literature includes papers by Huber and Imhof (2019), and Silveira,
Vasconcelos, Resende, and Cajueiro (2022) who apply machine learning algorithms (together
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with price screens) to find possible patterns of cartels in Switzerland, Croatia, and Brazil,
respectively. Moreover, Rodŕıguez, Rodŕıguez-Monteqúın, Ballesteros-Pérez, Love, and
Signor (2022), and Imhof and Wallimann (2021) use machine learning algorithms in
multiple countries. The latter paper proposes a method to identify conspicuous groups of
firms directly instead of tenders affected by conspiracies. Huber, Imhof, and Ishii (2022)
investigate the transnational transferability of machine-learning algorithms. They show
that a country’s institutional context matters for a cartel’s influence on the distribution of
bids. Therefore, applicants should use algorithms trained with data from other countries
only with great reluctance. Wallimann, Imhof, and Huber (2022) detect incomplete cartels,
where only some but not all bidders are members of the colluding agreement. Finally
worth mentioning is the study of Silveira, de Moraes, Fiuza, and Cajueiro (2023) using
unsupervised machine learning for cartel detection.

4 Methods

We recommend two complementary approaches for railway-infrastructure companies to
detect potential cartels and, thus, avoid paying excessively high prices. First, we show how
machine-learning techniques can be implemented into the wide-scale use of digitization in
the railways’ infrastructure-procurement process (centralized approach). Thereby, screens
are used as predictor variables to assess whether a cartel is likely to be present in a tender.
Second, we propose a tool specifically designed for category managers to classify tenders
according to statistical benchmarks (decentralized approach). Here, we define the relevant
benchmarks with an intuitive machine-learning algorithm, the classification tree. Both of
our approaches require minimal data: We only need the bids submitted by the firms in a
procurement auction. This is valuable insofar as obtaining truthful information variables
other than price (e.g., business-specific variables such as capacity utilization) is challenging
without attracting the attention of a cartel.

Upon establishing the prediction framework we consistently use, we introduce both
respective approaches in greater detail in the following.

4.1 Prediction framework

We use supervised machine learning with a set of predictor variables (X) to predict our
outcome of interest (Y), the presence of a potential cartel. The outcome variable (also:
target variable) is binary—taking on the value 0 if firms compete and the value 1 if they
collude. To investigate the performances of machine-learning algorithms, we randomly
divide the data set into two parts. The training set consists of 75% of the observations, and
we use it to develop predictive models observing both predictor variables and outcomes.
The test sample consists of the remaining 25% of observations and is used to evaluate
model performance by predicting whether a potential cartel is active or not. Thereby,
we can assess the goodness of fit of the models by comparing the predictions with the
actual outcomes. To do so, we apply two measures: The correct-classification rate and
the F1 score. The correct-classification rate denotes the proportion of correctly classified
tenders in the test set. The F1 score is a harmonic mean of the precision and recall
(also: sensitivity) in the test set. Precision calculates the proportion of how many cartel
classifications are correct (true positives divided by all cases classified as ”suspicious”),



6

whereas recall measures the proportion of actual cartels that the algorithms correctly
classify (true positives divided by all true cartel cases).

We exclusively use descriptive statistics of the bids in a tender as predictor variables.
These screens describe bidders’ behavior in a tender and capture distributional changes due
to a cartel. These exist because cartel members (explicitly or tacitly) coordinate bids in a
tender and are aware of their competitors’ bids. For our application, we use nine frequently
discussed screens (see, e.g., Rodŕıguez, Rodŕıguez-Monteqúın, Ballesteros-Pérez, Love,
and Signor, 2022, Huber, Imhof, and Ishii, 2022, Wallimann, Imhof, and Huber, 2022):
the coefficient of variation (CV), the spread (SPD), the difference between the two lowest
bids (DIFFP), the relative distance (RD), the alternative relative distance (ALTRD), the
normalized distance (NORMRD), the skewness (SKEW), and the Kolmogorov-Smirnov
test (KSTEST). These screens are formally described in Appendix A.

4.2 Centralized approach: An add-on to the digitization of the railways’
infrastructure procurement

Our first approach (depicted in Figure 1) relies on the instance of an increasingly digitized
procurement, which allows to collect bids of firms in a single structured database (optimally
in an automated way). Machine-learning algorithms then investigate the database with
regard to potential cartels. They classify tenders as suspicious (the stack marked grey,
including Tender p) or non-suspicious (the stack kept white, including Tender x). These
evaluations are directly made available to the superior category manager of a railway-
infrastructure company.

Figure 1: Centralized approach

As all tenders are pooled, the centralized (or cockpit) approach allows for both complete
and disaggregated overviews of potentially suspicious clusters, i.e., broken down by regions,
time periods, auction formats, and firms involved.

Note that until now, we simplified the classification task by predicting a binary target
taking the values 0 or 1, i.e., whether firms collude or not. However, what we really do
is carrying out so-called probability predictions. The intuitive default value for machine-
learning algorithms is 0.5: If a tender is assigned a probability of 0.5 or higher, the
algorithm classifies the outcome value to 1, i.e., ”suspicious” in terms of potential cartel
participation. Stated differently, this rule puts each tender to the class that is more



4. Methods 7

likely. Increasing the threshold, e.g., to 0.7, allows applicants (i.e., railway-infrastructure
companies) to avoid false-positive results, i.e., wrongly classifying bidders as a cartel. On
the other hand, however, it increases the occurrence of false-negative results, i.e., a cartel
is wrongly discarded. In the literature, different thresholds are proposed. Huber and
Imhof (2019), for instance, suggest a decision threshold between 0.5 and 0.7, while Silveira,
Vasconcelos, Resende, and Cajueiro (2022) discuss a threshold between 0.6 and 0.75. We
combine these suggestions by labeling tenders with a probability prediction between 0.5
and 0.7 as ”suspicious” and those with an even higher value as ”very suspicious”.

Rail infrastructure companies could use a variety of algorithms to detect potential
cartels using this approach, three of which we present in the following. The first is a logistic-
regression model (Berkson, 1944). The second algorithm is the random forest (Breiman,
2001) which builds on classification trees. The third algorithm is the super learner (van der
Laan, Polley, and Hubbard, 2007), which is an ensembled method averaging several other
machine learning algorithms, i.e., random forest, lasso logit regression, gradient boosting,
and neural networks.

First, we implement the (binary) logistic regression as baseline model in order to
highlight the contribution to the literature by (newer) machine-learning algorithms. The
logistic regression has a binary outcome variable. In our case, it takes on the values ”cartel”
and ”competition”, respectively. The algorithm converts the outcome variable through a
logistic function to assess the probability of a cartel. We apply the stats package by the R
Core Team (2013) to implement the logistic regression.

Our second algorithm, the random forest, is especially suitable to deal with the
bias-variance trade-off: With a single classification tree, we can reduce the bias (i.e.,
systematically wrongly predicting the outcome variable) when we build a ”bushy tree”
and thus allow for more splits. By doing so, however, we increase the variance (i.e., how
much the results vary when the algorithm is applied to different test sets) in the test set
due to many leaves. To tackle potential variance in the test set, the random forest builds
many trees (in our case, a thousand) by drawing multiple subsamples from the training
set. Moreover, to reduce the correlation of trees across these subsamples and thus make
the random forest more flexible, the algorithm considers at each splitting step only a
subsample of predictor variables, in our case, the square root of the number of predictors.
The final predictions consist of the average over all the classification trees. To implement
the random forest, we apply the randomForest package for the statistical software R by
Liaw and Wiener (2018). In addition to the advantages mentioned above, the random
forest is relatively user-friendly because it does not require tuning specific penalty terms
(Athey and Imbens, 2019).

Finally, we implement the super learner. This algorithm is a weighted average of
multiple machine learning algorithms. We include the random forest (Breiman, 2001),
lasso logit regression (Frank and Friedman, 1993, Tibshirani, 1996), gradient boosting
(Friedman, 2001), and neural networks (McCulloch and Pitts, 1943). The random forest is
presented above. The lasso regression is a logistic regression that includes a penalty term,
which restricts the number of predictor variables by setting the effect of predictor variables
with low predictive power to zero. Similar to the random forest, gradient boosting grows
a set of classification trees. In contrast, however, it builds trees in a forward stage-wise
manner. The goal is that any additional tree sequentially learns from mistakes made in
previous trees. Eventually, a neural network fits a system of nonlinear functions, thereby
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allowing flexibility in the association between the outcome and the predictor variables. We
apply the SuperLearner package by van der Laan, Polley, and Hubbard (2007) together
with the party, glmnet, xgboost, and nnet packages by Hothorn, Hornik, Strobl, and Zeileis
(2022), Friedman, Hastie, Tibshirani, Narasimhan, Tay, Simon, Qian, and Yang (2022),
Yuan (2022), and Ripley and Venables (2022) in the statistical software R.

4.3 Decentralized approach: A category manager’s tool

In practical use, continuous (automated) data collection in a single structured database
may not be feasible. Instead, monitoring of tenders is typically delegated to multiple
category managers—so there is a need to equip them with a cartel-screening tool that works
decentrally. Category managers’ tasks in railway-infrastructure companies are usually quite
complex. For example, they must orchestrate construction during operation because the
trains usually keep running when the building is in progress. Moreover, they are in constant
exchange with planners and construction companies. Therefore, if a railway-infrastructure
company expects a category manager to screen the market for potential illegal cartels in
addition to daily business, a tool must be as simple as possible (that is, reducing effort
cost and enhancing interest in the matter as much as possible).

Figure 2 depicts the decentralized application of the tool we propose: Every category
manager is responsible for multiple tenders. He or she investigates each assigned tender
immediately using the tool. For instance, Category Manager 1 finds tenders a and b
exhibiting suspicious bid patterns (marked grey). He then hands them over to the superior
category manager for further investigations. In contrast, the tool does not indicate bid
rigging for the tenders of Category Manager 3 and, therefore, no further action is needed.

Figure 2: Decentralized approach

We propose a threshold-based approach to screen railway-infrastructure markets. Simi-
lar to Section 4.2 and in contrast to theoretically derived benchmarks (see, e.g., Imhof,
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2019), we apply a machine-learning algorithm to define the thresholds. More precisely,
we suggest the use of a classification (or decision) tree (Breiman, Friedman, Olshen, and
Stone, 1984), a method that is easy to understand (or, at least, easy to utilize) also
by non-data-scientists. In our application, the classification tree uses screens to predict
whether a tender is suspicious and, thus, a cartel might be active. The classification of
a tender starts at a top node with an associated threshold of the screen. Based on the
screen’s value of this tender, a category manager can move down the corresponding branch.
The agent repeats this procedure until she arrives at a so-called leaf or terminal node.2

The terminal node indicates whether the tender is suspicious or not. More technically,
we can think of the terminal nodes as non-overlapping regions, i.e., a set of suspicious or
non-suspicious tenders. According to a goodness-of-fit criterion, e.g., the Gini coefficient
for binary outcomes, the algorithm selects the predictors to maximize the homogeneity of
the prediction at each split.

To prune the tree and to determine the optimal level of tree-complexity, we perform
10-fold cross-validation. For the implementation of the classification tree, we apply the
caret package for the statistical software R by Kuhn (2019).

Finally, note that—due to the discrete structure of decision trees—probability thresholds
should not be freely chosen in the decentralized approach, which is why we only work with
a value of 0.5.

5 Fitting the models

To train our machine-learning models, we draw on data from three convicted bid-rigging
cartels provided by the Swiss Competition Commission. These cartels are See-Gaster,
Grisons, and Ticino, previously introduced by Imhof, Karagök, and Rutz (2018) and
Wallimann, Imhof, and Huber (2022).3 The See-Gaster and Grisons cartels were active
from 2004 to 2010, while the Ticino cartel was active from 1999 to March 2005. These
cartels rigged public and private contracts in construction markets comparable to the
railway infrastructure, i.e., road construction, asphalting, and civil engineering. Wallimann,
Imhof, and Huber (2022) classify the procurement process in Switzerland as first-price
sealed-bid auctions, where all bidders simultaneously submit bids. The bids are ”sealed”
because bidders do not know their competitors’ bids. The price is still the most important—
albeit not the single—criterion in determining the winner.4 Pooling the data of all three
cartels leads to 538 competitive (no-cartel) and 519 non-competitive (cartel) tenders. To
prevent class imbalances, i.e., preventing the case that one class occurs distinctively more
often than the other (a situation where classification methods might not be good at (Békés

2In Appendix B, we show how to apply the decentralized approach.
3See also decisions Bauleistung See-Gaster: Verfügung vom 8. Juli 2016, and Bauleis-
tung Graubünden Strassenbau u.a.: Verfügung vom 19.8.2019 available on the home-
page https://www.weko.admin.ch/weko/de/home/praxis/publizierte-entscheide.html (ac-
cessed on November 29, 2022). For the Ticino cartel see also on this homepage:
https://www.weko.admin.ch/weko/de/home/medien/medieninformationen/nsb-news.msg-id-16109.html
(accessed on November 29, 2022).
4For instance, even before the overhaul of the Swiss procurement law in 2021, mini-
mum requirements and eligibility criteria were also considered. For more on this, see
https://www.bkb.admin.ch/bkb/de/home/themen/revision-des-beschaffungsrechts.html (accessed on
February 21, 2023).
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and Kézdi, 2021)), we only consider competitive tenders where past (or future) cartel
participants submitted.

5.1 Centralized approach

The screens we use in the centralized approach correspond to the predictor variables
described in Appendix A as well as their interactions and squares. Table 1 presents the
prediction performance in the test set for the three different algorithms (logistic regression,
random forest, and super learner). We achieve (decent) correct classification rates from
77.7% to 81.3%. In other words, we correctly classify about four out of five tenders. In
this regard, the super learner outperforms the two other algorithms by 2.8 percentage
points and more.

Table 1: Performance measurements in the centralized approach

Algorithm CCR F1 score 95% PI CCR 95% PI F1 score

Logistic regression 0.777 0.789 [0.717; 0.842] [0.711; 0.845]

Random forest 0.785 0.803 [0.777; 0.857] [0.773; 0.860]

Super learner 0.813 0.796 [0.774; 0.853] [0.766; 0.889]

Note: PI and CCR denote prediction interval and correct-classification rate, respectively.

Since these performance measures might also depend on the test set’s composition, we
additionally calculate bootstrap prediction intervals by randomly drawing 2,000 training
and test sets without replacement. In every training sample, we construct a new prediction
algorithm and estimate the performance in the test set. The resulting 95%-prediction
intervals are relatively wide, ranging from 7.9 percentage points (correct-classification rate
of super learner) to 13.4 percentage points (F1 score for logistic regression). Therefore,
and as a word of caution, the model’s performance partially depends on the composition
of the training and test sets. However, regarding the random forest and the super-learner
algorithms, the lower bound of the interval is still higher than three-quarters correct
prediction.

Concerning 95%-prediction intervals, we see that the random forest performs almost
identically well as the super learner. Therefore, we conclude that both of these algorithms
are advisable in the present context. The lower bound of the logistic regression, in turn, is
substantially lower (71.7% for the correct-classification rate and 71.1% for the F1 score).

An additional feature of tree-based algorithms is that we can depict the meaningful
features. Figure C.1 in Appendix C shows the relative importance of the predictor variables
according to the 2,000 bootstrap samples. We notice that the coefficient of variation is
the most important predictor variable. This comes at no surprise, as also other studies
consider it as among the most important predictor variables for classifying potential cartels
(Imhof and Wallimann, 2021).

Finally, applying the random forest, Figure 3 shows how different decision thresholds
affect the performance in the test set: By iteratively increasing the thresholds, the overall
correct-classification rate is roughly unaffected up to a threshold of around 0.7, while the
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false positive predictions substantially decrease (from around 19% to 8%). We conclude
that even with the higher threshold, we are still able to identify potential cartels. This
finding is in line with the thresholds discussed in the literature.

Figure 3: Influence of the probability threshold when applying the random forest

5.2 Decentralized approach

The category manager’s tool of the decentralized approach consists of a classification tree,
which (theoretically, i.e., prior to pruning) utilizes all predictor variables described in
Appendix A.

Table 2 presents the accuracies of the classification tree in the test set.

Table 2: Performance measurements of the category manager’s tool

Correct-classification rate 0.800

F1 score 0.806

95% prediction interval correct-classification rate [0.770; 0.853]

95% prediction interval F1 score [0.762; 0.855]

The correct-classification rate amounts to 80%, the F1 score is about the same. Analo-
gous to Section 5.1, we calculate bootstrap prediction intervals, constructing a classification
tree for each of 2,000 training samples and estimating the performance in the respective
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test sets. The resulting 95%-prediction interval ranges from 77.0% to 85.3% for the correct-
classification rate. This describes the category manager’s tool as similarly predictive as
the more opaque algorithms of the centralized approach.

Figure 4 presents the final classification tree for the direct application by category
managers. We can easily observe that our classification tree is far from being bushy and
has only two terminal leaves. Moreover, only the coefficient of variation (CV) is relevant
for classifying a tender as suspicious or not. A category manager can classify a tender as
suspicious whenever the CV is lower than 0.053.

CV ≥ 0.053

0 1

yes no

Figure 4: Classification tree of the category manager’s tool

6 Ex-ante application to the Swiss railway-infrastructure

market

In this section, we apply both approaches to real-world data from the railway-infrastructure
sector. In particular, we draw on data provided by the Swiss Federal Railways. From a
data-analytics perspective, we now use the uncovered patterns from the data of the Swiss
Competition Commission and use it to predict the target variable (i.e., a potential cartel’s
presence or not) in the data of the Swiss Federal Railways. First, we subsequently discuss
the institutional background. Then, we present summary statistics of the data set. Finally,
we screen the data for collusive behavior using both the centralized and decentralized
approaches. We do so by classifying all tenders as “suspicious” and “non-suspicious” in
terms of a traffic-light system. The group of suspicious tenders is then analyzed in more
detail.

6.1 Background

In 2020, the Swiss railway network amounted to 5,317 km.5 Several railway-infrastructure
companies are responsible for building, maintaining, and operating infrastructure. These
companies are vertically integrated into state-owned public transport companies. The Swiss
Rail Infrastructure Fund (BIF), endowed by general-tax revenue as well as fuel and road
taxes, funds expenditures to build, maintain, and operate the railway infrastructure. Since
the implementation of the BIF in 2016, an annual amount of 4 to 5 billion Swiss francs has
been invested in railway infrastructure, roughly 20% in building, 66% in maintaining, and

5See https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaet-verkehr/verkehrsinfrastruktur-
fahrzeuge/streckenlaenge.html (accessed on October 12, 2022)
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14% in operating railway infrastructure (LITRA, 2022). The federal transport agency and
the railway-infrastructure companies conclude four-year agreements about goals and the
distribution of funds to specific tasks to achieve these goals. Based on these agreements and
the available funds, the infrastructure companies contract specialized private construction
companies for construction projects. Usually, the law requires competitive procedures for
contracting out.

6.2 Data and descriptive statistics

We use a unique data set provided by the Swiss Federal Railways, containing projects
of track construction, station construction, and civil engineering projects. The data set
contains tenders ranging mainly from 2015 to 2021. Overall, we observe 1,818 tenders.
Railway-infrastructure companies in Switzerland can generally choose between two ten-
dering procedures: open procedures and procedures on invitation. Using the latter, a
railway-infrastructure company invites a predefined (usually at least three) number of
firms. The open procedure does not restrict the participation of firms submitting bids and
is thus associated with more severe competition (Wallimann, Imhof, and Huber, 2022).

Note that in order to apply the screens presented above, we must perform some final
data wrangling before starting the actual screening. First, since a minimum of three bids is
required to calculate the entirety of screens described in Appendix A, we drop tenders with
less than three bids. Second, from time to time, firms submit different variants. In such
cases, we only consider the lowest bid. Our final sample contains 1,206 tenders altogether.

Table 3 presents the number of tenders (with more than two bids) per year grouped by
the two procedures. For example, there were 267 tenders in 2016, of which 68 belonged to
the open procedure and 192 to the procedure of invitation, respectively.

Table 3: Tenders per year

All Open procedure Procedure on invitation

older than 2015 5 0 5

2015 47 21 26

2016 267 68 199

2017 155 46 109

2018 162 31 131

2019 185 49 136

2020 224 56 168

2021 158 38 120

2022 1 1 0

Unknown 2 0 2

Total 1,206 310 896
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Switzerland consists of 26 member states, the so-called cantons. An interesting feature
of our data set is that we obtain data from all over Switzerland. Figure 5 shows the
distribution of projects among cantons. We observe, e.g., that the most populous6 canton
(Zurich) has the most tenders (261), whereby 216 (83%) and 45 (17%) are procedures
on invitation and open procedures, respectively. The cantons with the second and third
highest number of tenders are Vaud and Ticino with 132 and 125, respectively.

Figure 5: Tenders by canton

Our analysis exclusively rests upon the bids submitted by the firms. Table 4 presents
the key descriptive figures of these bids (grouped by tender procedure). We observe, e.g.,
that the highest bid amounts to approximately 376 million Swiss francs. In comparison, the
lowest bid amounts to 2,175 Swiss francs. The mean and median values amount to 2.7 and
0.7 million Swiss francs, respectively, which indicates a heavily right-skewed distribution.
We illustrate this distribution also in Figure D.1 in Appendix D. The average bid for
projects tendered with the procedure on invitation is lower (0.8 million Swiss francs) than
with the open procedures (7.0 million Swiss francs).

Table 4 also shows that the total number of firms in the data set amounts to 2,061.
Of these firms, 1,559 and 779 took part at least once in a procedure on invitation and an
open procedure, respectively.

6With 476 km, Zurich is also home to the most expansive railway network in Switzerland. See
https://reporting.sbb.ch/infrastrukturen (accessed on February 21, 2023).
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Table 4: Descriptive statistics

All Open procedure Procedure on invitation

Number of bids

Mean 3.97 4.68 3.73

Median 4 4 3

Bid values (Swiss francs)*

Mean 2,688,906 7,021,877 804,103

Median 656,117 3,028,289 408,199

Maximum 375,591,800 375,591,800 36,954,503

Minimum 2,175 11,522 2,175

Standard deviation 11,180,096 19,429,012 1,876,232

Number of bidding firms

Total 2,061 774 1,559

*Note: We use all bids to calculate the descriptive statistics on the bid values. Therefore,
tenders with many bidders have a higher weight.

In the following, we illustrate the application of the two approaches discussed in this
paper using the data of the Swiss Federal Railways. We present the results in two steps:
First, we classify all tenders in terms of a traffic-light rating system as red (i.e., suspicious)
or green (i.e., non-suspicious). Second, we screen for potential collusion in subsets of the
data (regarding geography, auction format, and firm interactions).

6.3 Traffic-light rating system and the detection of collusive subsets

Table 5 presents the results of the two approaches’ application to the database of the Swiss
Federal railways. Applying the random forest and the super learner of the centralized
approach with the decision threshold of 0.5, we classify 8.5% and 5.6% of all tenders as
suspicious, respectively. When we look for ”very suspicious” tenders by increasing the
decision threshold to 0.7, the random forest and the super learner flag only 2.6% and 2.4%,
respectively, of all tenders as candidates for further investigations.

Applying the category manager’s tool of the decentralized approach, we see that 130
(10.8%) of all tenders are classified as suspicious, whereas the vast majority of tenders
(89.2%) again is classified as non-suspicious.
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Table 5: Absolute and relative amounts of suspicious tenders per algorithm

Approach Algorithm Probability threshold Suspicious Non-suspicious

Centralized Random forest 0.5 102 (8.5%) 1,104 (91.5%)

Super learner 0.5 68 (5.6%) 1,138 (94.4%)

Random forest 0.7 31 (2.6%) 1,175 (97.4%)

Super learner 0.7 29 (2.4%) 1,177 (97.6%)

Decentralized Classification tree 130 (10.8%) 1,076 (89.2%)

In summary, the results are not indicative of active potential cartels. We conclude that
from an overall perspective, procurement of the Swiss Federal Railways is efficient. As
expected (regarding the error rates), both approaches classify a subset of several tenders
as collusive. This could be due to false-positive results. Nevertheless, if there actually
is collusion, it is most likely within theses subsets—rendering them still very worthwhile
investigating.

Using the 102 tenders classified as suspicious by the random forest, we investigate
whether noticable patterns occor in terms of regions, the procurement process applied, or
firm interactions. We use the results of the random forest due to two reasons: First, the
centralized approach includes such further analysis. Second, the use of the random forest
with the decision threshold of 0.5 has practical reasons, as it identifies more tenders as
suspicious than the super learner. Therefore, the chances increase that we find a cluster
exhibiting potential cartels. Moreover, 63 of the 68 tenders marked as suspicious by the
super learner also classified as suspicious by the random forest. Therefore, we conclude
that the findings of the two algorithms are congruent.

We start by geographically allocating the suspicious tenders to cantons. In Table 6, we
list all cantons with more than 50 tenders. The strongest penetration of suspicious tenders
amounts to 14.4% (present anonymization at the service of the Swiss Federal Railways),
which is 5.9 percentage points higher than the nation-wide average. Regarding the two
different procedures, we do not see any difference, as for both procedures (open vs. on
invitation), the share of suspicious tenders is between 8 and 9 percent (see also Table 6).
Finally, differentiating between years, we see that the amount of suspicious tenders is the
highest in 2017. However, with 4.4 percentage points, the difference to the overall fraction
of suspicious tenders is rather small.
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Table 6: Screening within clusters (random forest with probability threshold 0.5)

Suspicious Non-suspicious

All 102 (8.5%) 1,104 (91.5%)

By canton

Canton A 14.4% 85.6%

Canton B 13.1% 86.9%

Canton C 9.3% 90.7%

Canton D 8.5% 91.5%

Canton E 6.8% 93.2%

Canton F 4.6% 95.4%

Canton G 4.0% 96.0%

By procedure

Open procedure 27 (8.7%) 283 (91.3%)

On invitation 75 (8.4%) 821 (91.6%)

By year

2015 5 (10.6%) 42 (89.4%)

2016 15 (5.6%) 252 (94.4%)

2017 20 (12.9%) 135 (87.1%)

2018 12 (7.4%) 150 (92.6%)

2019 14 (7.6%) 171 (92.4%)

2020 21 (9.4%) 203 (90.6%)

2021 15 (9.5%) 143 (90.5%)

To investigate the interaction of firms, we present a matrix quantifying how many times
firms participated in suspicious tenders together with other firms in Table 7. Such a matrix
is helpful as we assume that a bid-rigging cartel involves regular interaction between firms
(Imhof, Karagök, and Rutz, 2018). Therefore, we only include firms with a minimum
of three suspicious tenders and at least one interaction with another firm partaking at
three or more suspicious tenders. The diagonal of the matrix contains the percentage of
suspicious tenders of each individual firm, where the values in brackets refer to suspicious
(bolded) and overall tenders the firm in question took part. For instance, regarding firm
20, 22% of the tenders (that is, 7 out of 32 tenders) are classified as suspicious.

For the remaining 12 firms, we analyze all 212 = 4096 possible clusters (including
trivial clusters with no or single firms). For each of these, we compute a ”suspicioucy rate”,
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Table 7: Firm interaction (random forest with probability threshold 0.5)

20 227 163 23 179 2411 13 70 89 123 180 273

20
22%

(7/32)
20%

(2/10)
0%

(0/1)
25%
(1/4)

75%
(3/4)

33%
(3/9)

227
23%

(7/30)
0%

(0/1)
25%
(1/4)

67%
(2/3)

0%
(0/2)

20%
(1/5)

163
7%

(5/72)
4%

(1/26)
0%

(0/3)
0%

(0/1)

23
5%

(4/86)
7%

(1/15)
0%

(0/1)
10%

(1/10)

179
7%

(4/59)
0%

(0/1)

2411
31%

(4/13)
100%
(1/1)

0%
(0/3)

13
5%

(3/63)
13%
(1/8)

70
50%
(3/6)

89
33%
(3/9)

100%
(1/1)

123
18%

(3/17)

180
17%

(3/18)

273
9%

(3/32)

which we define as the ratio of suspicious to overall tenders involving at least one firm
of the cluster. The ranking of firms by suspicioucy rate depends on whether we include
the diagonal elements of Table 7 into our analysis. If we do, the two most ”suspicious”
clusters (with more than one firm) are {70, 89} and {70, 2411}, even though there is only
one interaction between firms 70 and 2411 and none between firms 70 and 89. Even by
increasing the cluster size, the suspicioucy rate is barely driven by the interaction of firms.
For example, the most suspicious cluster of size four, {20, 70, 89, 2411}, exhibits a rate of
32%. However, only five out of 22 suspicious tenders relate to interactions.

Once we exclude the diagonal elements, the suspicioucy rate reads as the ratio of
suspicious to overall tenders, each involving at least two of the firms of a cluster. Still,
the top-ranked clusters exhibit little interaction.7 However, further down the list, more
interesting cases arise: Cluster {20, 89} consists of four interactions, three of them
suspicious. Likewise, two out of three interactions are suspicious in cluster {70, 227}. Fifth
in line, cluster {20, 70, 89, 2411} (which we know from above) registers five suspicious
interactions out of nine. The thing to notice is that firm 89 never interacts with firms 70

7The clusters {70, 2411} and {89, 123} only interact once, reaching a 100% rate, because the single
interaction is labeled suspicious.
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and 2411, and firms 20 and 70 do not interact. Close next is cluster {20, 89, 123} with a
suspicioucy rate of 50% (seven out of 14).

Since cartels (if stable) often and regularly interact, it would be worthwhile to put the
companies of these clusters under increased scrutiny in future tenders, even though, up to
today, the results are far from striking.

In summary, we classified between 89.2% and 97.6% of all tenders as non-suspicious.
These results do not indicate active large-scale cartels. Furthermore, using the results of
the centralized approach with the random forest algorithm and a decision threshold of
0.5, we found no striking bid-rigging patterns regarding cantons, procurement procedures,
and years. Nevertheless, looking at firm interactions of firms bidding more frequently in
suspicious tenders, we identify potential clusters of firms worth increased scrutiny. However,
it should be noted that these results may be due to classification errors and should be
treated with caution as they are based on small numbers.

7 Complementary analysis

7.1 Cost estimates of suspicious and non-suspicious tenders

For each tender, a cost estimate is calculated by the Swiss Federal Railways in advance.
The difference between the cost estimate and the actual cost is a key variable from a
business perspective of the Swiss Federal Railways: A positive number (i.e., actual costs
that are lower than the estimate) indicates that competition is playing out. In Table 8, we
present the difference between the firms’ bids and the cost estimates. Note that we take
the lowest bid in each tender for the firms’ bids.

Table 8: Differences between cost estimates and lowest bids of suspicious and non-suspicious
tenders

Metric All Suspicious tenders Non-suspicious tenders

Mean 547,866 816,561 522,652

Median 89,194 52,311 93,980

Note: ’Suspicious tenders’ are tenders classified as suspicious by the random forest with
the probability threshold 0.5.

Regarding Table 8, we observe the following. First, all the numbers are positive. This
means the estimated cost is consistently higher than the firms’ bids. Second, the medians
are lower than the means, probably driven by some high-volume tenders (see also Table
4). Finally, the mean is higher for the suspicious bids, whereas their median is lower.
We conclude that there are no (clearly visible) differences between the suspicious and
non-suspicious tenders in this analysis of the cost estimates.
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7.2 Inclusion of subsidiaries

Up to here, we considered each firm’s subsidiary individually (see, e.g., Table 7). This is
because they may prepare offers (and bids) independently. In the following, we include
the firms’ subsidiaries to the number of tenders. For example, assume that firm X has two
subsidiaries, firm Y and firm Z. We now consider these three firms (i.e., X, Y, and Z) as
one firm, i.e., firm X.

To investigate the interaction of firms, we again present a matrix quantifying how many
times firms participated in suspicious tenders together with other firms in Table 9. But as
the inclusion of subsidiaries increases the number of (suspicious) tenders, we only consider
firms with a minimum of five suspicious tenders.

Table 9: Firm interaction, including subsidiaries (random forest with prob. threshold 0.5)

107 1241 20 2022 227 2380 273 36 435

107
12%

(5/42)
10%

(1/10)
0%

(0/1)

1241
14%

(5/37)
33%
(2/6)

20
22%

(7/32)
20%

(2/10)
25%
(1/4)

2022
17%

(6/35)
0%

(0/1)

227
23%

(7/30)
25%
(1/4)

2380
8%

(14/169)
0%

(0/4)
4%

(2/45)
3%

(1/29)

273
7%

(5/67)

36
7%

(8/107)
4%

(1/25)

435
6%

(5/84)

As in Section 6.3, we compute the suspicioucy rate for each possible cluster. (Here,
there are 29 = 512 clusters to analyze.) Including diagonal elements, the most suspicious
cluster, {20, 227}, contains of 72 tenders, 16 of which (i.e., 22%) are classified as suspicious.
The second and third suspicious clusters, {20, 227, 2022} and {227, 2022} also reach
suspicioucy rates of 21% and 20%, respectively, but there is no interaction between firm
2022 and the other firms. In general, as above, suspicioucy is again driven by patters
within single firms (including their subsidiaries). Specifically, most noticeable clusters
include firm 227 (7/30 = 23% suspicious tenders), firm 20 (7/32 = 22%), or firm 2022
(6/35 = 17%). Once we exclude the diagonal elements, the most suspicious clusters do not
look particularly striking: In {1241, 2022}, 2 out of 6 (33%) interactions happen in the
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context of suspicious tenders. Next on the list is {1241, 2022, 227, 2380} (3/10 = 30%)
and the very similar group of firms {1241, 2022, 20, 2380} (also 3/10 = 30%.)

8 Discussion

Identifying a potential cartel using statistical methods is a thorny task. A suspicious bid
pattern in one tender is no definitive evidence for collusion. Nevertheless, it indicates
where to look at more closely, or—if no indication of a cartel is found—increases a railway-
infrastructure company’s confidence that procurement is competitive. The means we
propose for railway-infrastructure companies to deploy exhibit several advantages. First,
data requirements are low. This is important as it comes with low effort (for the category
manager in the decentralized approach) and allows for cartel screening in large data
sets (using the centralized approach). Second, our approaches are relatively simple to
implement from a technical point of view. Third, they complement each other. While
the centralized approach allows for a systematic overview and various in-depth evaluation
options, the category manager’s tool of the decentralized approach is particularly well-
suited for everyday use. Finally, appropriate communication to the industry helps to deter
future collusion in the market.

Besides these advantages, one should be aware of some limitations. First, the category
manager’s tool could be seen as too simple since it contains only one benchmark. However,
the results presented in section 5 demonstrate that it also achieves decent predictions that
are almost as accurate as with the centralized approach. Second, being aware of the use of
screening tools, firms can try to beat the algorithms. For instance, they could influence the
bids in a way that the algorithms classify tenders as ”non-suspicious”. However, such efforts
can be expensive, especially when it comes to the centralized approach, which is a black
box for firms. Moreover, in-depth cooperation requires more communication, potentially
increasing evidence that a competition agency can use to condemn firms (see also Imhof
and Wallimann, 2021). Finally, screening tools are just one of several cartel detection
methods such as leniency programs. However, increasing the effort to beat algorithms
leads to more evidence, making it easier to prosecute potential cartels (see, e.g., Blatter,
Emons, and Sticher, 2018).

Future studies should investigate how other screening methods could complement the
approaches presented in this study. An example is the application of econometric models
to flag potential cartels (see, e.g., Bajari and Ye, 2003), as it also takes into account other
factors, such as the workload of companies, in order to find potential cartels. One downside
of econometric models, however, is their high data requirement, as variables are required
that often are intern to firms (such as costs and revenue). Another promising addition
could be the application of coalition-based screens (Imhof and Wallimann, 2021), which
screen for groups of suspicious firms instead of suspicious tenders. The main advantage
of coalition-based screens is that it directly flags suspicious firms. However, this is not
possible by simple means such as the category manager’s tool, which approaches tender by
tender. Classifying suspicious groups of firms, in contrast, requires an overview of many
tenders in which the same firms submit a bid. Thereby, the coalition-based approach could
be promising in identifying collusive subsets when firms are observed frequently interacting
in suspicious tenders.

Moreover, similar to the subsample screening we presented above (regarding geography,
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different tendering procedures, and firm interactions), practitioners could apply further
in-depth analysis—for instance, regarding different types of projects, as some markets
could be more susceptible to cartels than others.

Finally, the external validity of our two approaches is of great practical relevance.
External validity means the extent to which the correct classifications are similar in new
data sets. For instance, the study of Huber, Imhof, and Ishii (2022) investigates the
transnational transferability of screening methods and finds that classification rates can
go down when training algorithms in one country and testing performance in another.
In our study, external validity refers to whether the patterns of association between the
target variable (i.e., potential cartel or competition) and the screens found in the road
construction, asphalting, and civil-engineering data apply in railway-infrastructure tenders.
We argue that this is the case since the corresponding markets seem comparable due to
several reasons: First, the procurement procedures are the same (e.g., Wallimann, Imhof,
and Huber, 2022).8 Second, in both markets, the companies need heavy machinery and
are therefore limited in their radius of action. Third, in both markets, companies depend
on comparable suppliers of, e.g., raw materials. Therefore, natural geographical barriers
to entry arise from the latter two points. Fourth, we used training data from the same
country, i.e., both data sets are from Switzerland. Fifth, we used a broader set of training
data (i.e., three cases) to construct prediction models. Finally, an indication is that several
engineering and construction firms are also active in the railway-infrastructure market.
However, more research on the existence of general cartel patterns across diverse markets
is needed. Furthermore, data of upcoming cases has to be used to develop new models
able to detect future conspiracies.

9 Conclusion

This study introduced two complementary approaches allow screening for potential cartels
by railway-infrastructure companies. Both approaches rely on machine-learning algorithms,
which assess whether tenders show suspicious or non-suspicious patterns in terms of
potential collusion among bidders. We draw on previous investigations of the Swiss
Competition Commission to uncover such patterns. We used these patterns to predict
potential cartel behavior in railway-infrastructure procurement by means of a traffic-light
system.

First, we applied several state-of-the-art machine-learning algorithms to flag collusive
agreements of firms. The centralized approach of doing so allows a systematic overview of
a railway-infrastructure company’s tenders and various in-depth analyses.

Second, we presented a tool tailored to individual category managers responsible for
projects put out to tender. When a category manager detects bids exhibiting suspicious
patterns, she contacts the superior category manager for further investigations.

Be it by actually disclosing cartels or by deterring their formation, the endeavor of
screening tenders is of high practical relevance in light of the vast amounts of (public)
money devoted to railway infrastructure. Finally, the thing to notice is that the two
approaches can also serve as examples for uncovering potential cartels in other industries.

8Note, however, that the Swiss Federal Railways chooses the procedure on invitation relatively more often
than it is applied in the data set of the Swiss Competition Commission. Therefore, as that influences the
number of bidders, we did not consider this variable as a predictor.
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Appendix

A Formal introduction of the screens

To formally introduce the screens note that t denotes some tender t; b̄t is the mean of all bids
in tender t; sdt and dlosingbids,t are the standard deviation of all bids and the loosing bids not
including the lowest one of tender t respectively; nt is the number of bids submitted in tender t;
bmax,t is the highest bid of tender t respectively; bi,t and bj,t are the i− th and the j− th bids of
tender t, which are ordered from lowest to highest bids; it is the rank of bid i. We calculate the
screens using the following formulas:

CVt =
sdt

b̄t
, (A.1)

SPDt =
bmax,t − b1,t

b1,t
, (A.2)

DIFFPt =
b2t − b1,t

b1,t
, (A.3)

RDt =
b2,t − b1,t

sdlosingbids,t
, (A.4)

RDALTt =
b2,t − b1,t

(∑
nt−1
i=2,j=i+1 bj,t−bi,t)

nt−2

, (A.5)

RDNORt =
b2,t − b1,t

(∑
nt−1
i=1,j=i+1 bj,t−bi,t)

nt−1

, (A.6)

KSTESTt = max(D+
t , D−t ) with D+

t = maxi(
bi,t

sdt
− it

nt + 1
), D−t = maxi(

it

nt + 1
− bi,t

sdt
) (A.7)

B Decentralized approach: Example

In the following, we exemplify the application of the decentralized approach.

Assume we have Tender E with three bids amounting to 100,000, 110,000, and 120,000 Swiss
francs. A category manager, aiming to screen for suspicious behavior, can now apply the category
manager’s tool of the decentralized approach. Specifically, she applies the classification tree
presented in Figure 4. To use the classification tree, she computes the coefficient of variation, the
standard deviation divided by the mean (see Appendix A). The standard deviation of Tender E
amounts to 10,000, and the mean of Tender E to 110,000. Therefore, the coefficient of variation
amounts to (approximately) 0.091 (10,000 divided by 110,000). The category manager now
follows the left branch of the classification tree, as 0.091 is greater than 0.053 (”yes”). She arrives
at the terminal leaf ”0”: The tool classifies this tender as competitive. Simply put, the observed
bidding pattern does not resemble a cartel. In conclusion, the category manager does not have to
hand Tender E over to the superior category manager for further investigations (see also Figure
2).
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C Training the algorithms

Figure C.1: Variable importance plot of the random forest (note: we express the importance
of predictor variables relative to the maximum)

D Additional Figures and Tables

Figure D.1: Bid values in million Swiss francs (note: bid values higher 10 million Swiss
francs, i.e., 5.4% of all bids, have been removed for the plot)
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