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Summary This technical report is part of the project entitled Cost Reduc-
tion using Passenger Centric Timetabling. The project is a collaboration between
the Swiss Federal Railways and the Transport and Mobility (Transp-OR) lab-
oratory of EPFL. In this report, we present the status of the research project
after 6 months of investigation. Starting from the mathematical optimization
model of the timetable design proposed by Robenek (2016), the first challenge
was to scale up the methodology for the Swiss railway network. To meet this
challenge, we propose a mathematical model that can design a timetable for the
Swiss passenger service, while taking into account (explicitly) the behavior of the
passengers. The result of the model is the timetable itself as well as the routing
of the passengers. Several KPIs can be obtained using post-processing on the
results: train-km, passenger-km, load factor, etc. This report is organized as
follows. In Section 1, we briefly describe the problem at hand and we present (1)
the SBB data we received and (2) the path generation algorithm we developed
for this project. In Section 2, we present the mathematical model scaled up for
the Swiss railway case. Results of the MILP are showed in Section 3 for two
different small instances. Section 4 contains the current work on the heuristic
method. Finally, Section 5 lists shows the next steps.
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1 Problem at hand, data, and path generation

algorithm

Problem at hand The passenger centric train timetabling problem is a multi-
objective problem that can be graphically summarized as:

Supply
max profit

Revenue - operating cost

Demand
min passenger’s inconvenience

Generalized travel time

+ cyclic and non-cyclic timetables

This problem is inter-disciplinary. It combines the discrete choice theory, that
models the passengers’ behavior, and operations research, that decides on the
departure times of the trains (i.e. the timetable). The attributes affecting the
passengers’ choices with respect to the operated timetable are quantified into a
single variable of passenger generalized travel time. The objective of the proposed
model is the trade-off between the profit of the train operating company and the
overall travel time of the passengers.

Data We use the RER Vaud as case study for this project.
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The area extends to the following terminus stations:

Allaman,

Vallorbe,

Grandson/Yverdon,

Payerne,

Puidoux,

Aigle.

Note : the RER extension Payerne to Morat was not included in the sub area as
this branch, which is part of the RER system today, will not be served by RER
in the STEP 2030 reference scenario.

This corresponds to the following lines:

LSA AIG VAL AIG GRS CU ALL ALL
COS ROC DAY VIL YV LTY ETOY ETOY
BY VIL BRT TER EP PU STP STP
REN VEY CR MX ESP LS MOR MOR
PRMA TER AX CL CHV PRMA STJ STJ
LS MX LSA BURI BAV REN DEN LON
PU CL COS TOUR ECL BY REN REN
LTY BURI BY VV COS VU PRMA PRMA
VTE TOUR REN STSA VU COS LS LS
CU VV PRMA RIV BY ECL PUN PUN
EPS STSA LS EPS REN BAV CVN CVN
RIV RIV PU CU PRMA CHV GRV BOSS
STSA EPS LTY VTE LS ESP PUI GRV
VV CU VTE LTY PU EP MRL PUI
TOUR VTE CU PU LTY YV PAL PAL
BURI LTY EPS LS CU GRS
CL PU RIV PRMA
MX LS STSA REN
TER PRMA VV BY
VEY REN TOUR COS
VIL BY BURI LSA
ROC COS CL AX
AIG LSA MX CR

TER BRT
VIL DAY
AIG VAL
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PAL PAL LS PAY LS CN PUI VV
MRL PUI PUI GM PAL PAY CHX VVFU
PUI GRV PAL LUC MD LUC CORS CORS
GRV BOSS PALV MD LUC MD VVFU CHX
CVN CVN CHAT ECU PAY PAL VV PUI
PUN PUN ECU CHAT CN LS
LS LS MD PALV
PRMA PRMA LUC PAL
REN REN GM PUI
DEN LON PAY LS
STJ STJ
MOR MOR
STP STP
ETOY ETOY
ALL ALL

Concerning the demand, from the origin and destination matrix received from
SBB, we started by matching the OD zones to the OD stations. We finally have
1531 OD pairs. The graphic below illustrates the demand. We can see that
the most important flows are for the stations 2157 and 2548, that represent
respectively Lausanne and Renens.
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The OD matrix also includes the time of day distribution. The demand is
divided in 144 time slots, each representing 10 minutes of the day. The compu-
tation of the time distribution is based on the empirical time distribution
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in SIMBA (2030-STEP-Reference modeling) and the time distributions for the
sub area have been computed as follows:

Type 1: Internal OD pairs: original time distribution

Type 2: OD pairs which are cut at one end: average over all OD pairs
with the same trip end in the sub area

Type 3: OD pairs with both trip ends outside of the subarea: average
over all OD pairs of Type 2 for these cordon zones

The demand by TOD is illustrated on the Figure below. As we can see, there is
a first peak early in the morning and a second peak early in the evening.
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Some basic statistics are shown in the Table below:

Total demand # OD i # Group (i, t)
SBB raw data 71,486.56 3,969 571,536
Keep if demand > 0 71,486.56 1,534 114,703
Keep if O6=D 71,343.32 1,531 114,508
Keep if D > 10 22,021.37 459 1,136

Path generation algorithm

o s

t
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d
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Iteration#1:
o - s
Iteration#2:
o - s - t
o - s - u
o - s - v
Iteration#3:
o - s - t - x
o - s - t - y
o - s - u - d
o - s - v - d
Iteration#4:
o - s - t - x - d
o - s - t - y - d
o - s - u - d
o - s - v - d

When constructing the paths, we check the following conditions

Never two times the same station

Never two times the same line

No change of line if the next station of the new line is the same as the next
station of the current line

Maximum 3 lines in a path (i.e., 2 transfers in a path)

2 Mathematical model

Sets The mathematical model is based on the following sets of parameters:

• I is the set of origin-destination pairs,

• Ti is the set of preferred departure times for OD pair i,

• Pi is the set of possible paths for OD pair i,

• L is the set of operated lines,

• Lp is the set of lines in the path p,

• V ` is the set of available trains for the line `

• S` is the set of segments on line `

• S`p is the set of segments on line ` used by path p
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Main parameters

• nt
i: number of passengers who wish to travel between origin-destination

pair i at preferred departure time t,

• ati: preferred departure time of passenger group (i, t) to her destination (in
minutes past midnight),

• e: revenue rate (CHF / Pax-km)

• f : operating cost (staff cost (wages etc), vehicle cost, network usage fees
(including overhead cost)) per train in single traction (in CHF/Train-km),

• o: operating cost per additional train unit, in double or triple traction (in
CHF/Train-km),

• k`: length of line ` (in km),

• hs: length of segment s (in km),

• g: maximum length of a train (in train units),

• q: capacity of a single train unit,

• c: cycle duration (in minutes).

• m: minimum transfer time (in minutes).

• `p1: first line used in path p

We denote (i, t) the group of passengers who wish to travel between origin-
destination pair i at preferred departure time t.

Decision variables

• xtpi ∈ {0, 1}: takes value 1 if the passenger group (i, t) chooses path p, and
0 otherwise,

• ytp`vi ∈ {0, 1}: takes value 1 if the passenger group (i, t) using path p takes
train v on the line `, and 0 otherwise,

• d`v ∈ N: denotes the departure time of train v on the line `,

• z`v ∈ N\{0}: is an integer variable used to model the cyclicity corresponding
to train v on line `,

• ω`
vs ∈ N: denotes the number of passengers on segment s in train v on the

line `,

• µ`
v ∈ N: denotes the number of train units of train v on the line `,

• α`
v ∈ {0, 1}: takes value 1 if train v on the line ` is being operated, and 0

otherwise.
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Objective function The objective function ensures that total profits of the
operator are maximized:

max
∑
`∈L

∑
v∈V `

∑
s∈S`

ω`
vs · e · hs −

∑
`∈L

∑
v∈V `

(α`
v · f · k` + (µ`

v − α`
v) · o · k`) (1)

The first part of the objective function computes the revenues obtained from
the sale of train tickets to the passengers and the second part deduced the costs
that are supported by the operator.

Constraints In this section the supply-side constraints of the mathematical
model are listed and they are then explained one by one.

∑
p∈Pi

xtpi ≤ 1, ∀i ∈ I, ∀t ∈ Ti. (2)

∑
v∈V `

ytp`vi = xtpi , ∀i ∈ I, ∀t ∈ Ti, ∀p ∈ Pi, ∀` ∈ Lp. (3)

(d`v − d`v−1) = c · z`v, ∀` ∈ L, ∀v ∈ V ` : v > 1. (4)

d`v ≤ d`v+1 − 1, ∀` ∈ L, ∀v ∈ V ` : v < |V `|. (5)

ω`
vs =

∑
i∈I

∑
t∈Ti

∑
p∈Pi:l∈Lp

ytp`vi · nti, ∀` ∈ L, ∀v ∈ V `, ∀s ∈ S`p. (6)

µ`
v · q ≥ ω`

vs, ∀` ∈ L, ∀v ∈ V `, ∀s ∈ S`. (7)

α`
v · g ≥ µ`

v, ∀` ∈ L, ∀v ∈ V `. (8)

xtpi ∈ {0, 1}, ∀i ∈ I, ∀t ∈ Ti, ∀p ∈ Pi. (9)

ytp`vi ∈ {0, 1}, ∀i ∈ I, ∀t ∈ Ti, ∀p ∈ Pi, ∀` ∈ Lp, ∀v ∈ V `. (10)

ω`
vs ∈ N, ∀` ∈ L, ∀v ∈ V `, ∀s ∈ S`. (11)

d`v ∈ N, z`v ∈ N \ {0}, µ`
v ∈ N, α`

v ∈ {0, 1}, ∀` ∈ L, ∀v ∈ V `. (12)

• Constraint (2) ensures that every passenger group (and thus every passen-
ger) is using at most one path to get from her origin to destination.

• Constraint (3) ensures that every passenger group (and thus every passen-
ger) takes exactly one train on each of the lines constituting the chosen
path.
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• Constraint (4) ensures the cyclicity. It ensures that two consecutive trains
are separated by a multiple of c minutes.

• Constraint (5) ensures the departure of the trains are in ascending order
with a difference of at least one minute.

• Constraint (6) determines the number of passengers on each segment for
each train of each line.

• Constraint (7) determines the number of units used for each train of each
line, based on the number of passengers and the capacity of a single train
unit.

• Constraint (8) ensures that the maximum train length is not exceeded and
determines if a train on a line is operated or not.

• Constraint (9)-(12) are the domain constraints.

The next variables and constraints relate to the allocation of passengers to
the different path of the network. The general idea is each group of passengers
(i, t) want to select the path that minimizes his generalized travel time.

The generalized travel time for each passenger group (i, t) and each path p,
can be expressed as:

τ tpi =
∑
`∈Lp

rp`i + βW · wtp
i + βT · (|Lp| − 1) + βE · δtpi + βL · γtpi (13)

where

• βW ≥ 0, βT ≥ 0, βE ≥ 0, βL ≥ 0 are preference coefficients or weights for
waiting time, number of transfers, lateness and earliness,

• rp`i is the running time for OD pair i on path p using line `,

• wtp
i is the waiting time for passenger group (i, t) using path p,

• (|Lp| − 1) is the number of transfers associated with path p,

• δtpi is the scheduled delay of being early for passenger group (i, t) using
path p,

• γtpi is the scheduled delay of being late for passenger group (i, t) using path
p,

The schedule delay variables, for being early or late, are computed as follows:

δtpi ≥
(
ati − (d

`p1
v + b

p`p1
i )

)
−M · (1− ytpL

p
1v

i ), ∀i ∈ I, ∀t ∈ Ti, ∀p ∈ Pi, ∀v ∈ V `p1 . (14)

γtpi ≥
(
(d

`p1
v + b

p`p1
i )− ati

)
−M · (1− ytpL

p
1v

i ), ∀i ∈ I, ∀t ∈ Ti, ∀p ∈ Pi, ∀v ∈ V `p1 . (15)
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δtpi , γ
tp
i ≥ 0, ∀i ∈ I, ∀t ∈ Ti, ∀p ∈ Pi. (16)

where

• bp`i is the time to arrive from the starting station of the line ` to the ori-
gin/transferring point of the OD pair i in the path p.

• d`
p
1
v is the departure time of train v for the first line used in the path p.

• (d
`p1
v + b

p`p1
i ) is the departure time for passenger group (i, t) using path p.

The waiting time for each group of passengers (i, t) who selects the path p is
given by the sum of all waiting times happening on this path. The waiting time
for each change of line is computed as:

wtp`1
i ≥

(
(d`1v1 + bp`1i )− (d`2v2 + bp`2i + rp`2i +m)

)
−M · (1− ytp`2v2i )−M · (1− ytp`1v1i ),

∀i ∈ I, ∀t ∈ Ti, ∀p ∈ Pi, ∀`1, `2 ∈ Lp : `1 > 1, `2 = `1 − 1, ∀v1 ∈ V `1 , ∀v2 ∈ V `2 .
(17)

wtp`1
i ≤

(
(d`1v1 + bp`1i )− (d`2v2 + bp`2i + rp`2i +m)

)
+M · (1− ytp`2v2i ) +M · (1− ytp`1v1i ),

∀i ∈ I, ∀t ∈ Ti, ∀p ∈ Pi, ∀`1, `2 ∈ Lp : `1 > 1, `2 = `1 − 1, ∀v1 ∈ V `1 , ∀v2 ∈ V `2 .
(18)

wtp
i =

∑
`∈Lp\{1}

wtp`
i , ∀i ∈ I, ∀t ∈ Ti, ∀p ∈ Pi. (19)

wtp
i , w

tp`
i ≥ 0, ∀i ∈ I, ∀t ∈ Ti, ∀p ∈ Pi, ∀` ∈ Lp. \ {1} (20)

where M is a big number.

Due to limited capacity, it is possible that not all passengers are served within
the planned horizon. The generalized travel time for each passenger group (i, t)
that cannot be served is calculated as follows:

νti = min
p∈Pi

(∑
l∈Lp

rp`i

)
+ βB · c+ βT · ui + βL · (1440 + c− ati) (21)

where ui is the number of transfers in the shortest path for OD i.

This generalized travel time represents the option of taking the first possible
shortest path outside of the planning horizon (1440 minutes).

The generalized travel time for each passenger group (i, t), denoted τ ti , is then
computed as:

τ ti ≥ τ tpi −M · (1− x
tp
i ), ∀i ∈ I, ∀t ∈ Ti, ∀p ∈ Pi. (22)
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τ ti ≥ νti ·

(
1−

∑
p∈Pi

xtpi

)
, ∀i ∈ I, ∀t ∈ Ti. (23)

The generalized travel time, τ ti , is in minutes.

If we denote by V OT the value of time, i.e. the willingness-to-pay for travel
time savings, we obtain the generalized travel cost as follows:

Ct
i = V OT · τ ti , ∀i ∈ I, ∀t ∈ Ti. (24)

The total generalized travel cost, defined as the sum of the generalized travel
cost for all passengers, is therefore computed as:

GTC = V OT
∑
i∈I

∑
t∈Ti

nt
i · τ ti . (25)

Epsilon constraint will be used to ensure that the total generalized travel cost
does not exceed a certain level.

V OT
∑
i∈I

∑
t∈Ti

nt
i · τ ti ≤ ε · UB. (26)

where UB is an upper bound for the GTC and ε a factor that can vary between

0.1 and 1.

3 Pareto frontier and preliminary results on small

instance

The Pareto Frontier is the set of all Pareto efficient allocations between two
instances, which correspond to optimal values of both instance in a certain envi-
ronment. In this case, we will be defining our Pareto Frontier, between revenues
and passengers’ Generalized Travel Time (GTT) by running our cyclic model for
two different sets of input data.

Unfortunately the large dimension of the mathematical model does not allow
us to test the model on the full set of data (RER Vaud). For this reason, we
decided to test the mathematical model using two small instances: OBS3 and
OBS4. The first one consists of all the OD pairs departing between 7:35 am
and 8:05 am, with a demand restricted to at least 10. ODS4 consisted of all the
OD pairs departing between 7:05 am and 8:05 am, with a demand restricted to
at least 10. The running time was set to 3600 seconds (1h) for OBS3, whereas
OBS4 ran for 10800 seconds (3h). The steps for each set of simulations were as
follow:
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First, we run the cyclic model, where we maximize revenues while excluding
Constraint (26). It means that there is no limit for the Generalized Travel
Time, GTT.

After running the first simulation, we reach the fixed time limit. The GTT
value calculated will be considered as the upper bound parameter value for
the next steps. Indeed, by excluding Constraint (26), the GTT obtained
corresponds to the worst-case scenario for the passengers.

Then, we run the model but including Constraint (26). Different values of
ε will be simulated. For OBS3, we simulated values for ε between 0.5 and
1, with a 0.1 pace, whereas for OBS4 we simulated values for ε between
0.55 and 1, with a 0.05 pace.

After running all simulation mentioned above, we extract the following re-
sults: the best know solution with its corresponding GTC, the running time, the
value for ε as well as the optimality gap (only for OBS4 case).

OBS3 3600 The results are shown in the table below:

Based on these results, we were able to get the Pareto Frontier shown in the
graph below
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OBS4 10800 The results are shown in the table below:

Based on these results, we were able to get the Pareto Frontier shown in the
graph below
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We can see that both Pareto Frontier, obtained through different sets, have
similar shapes. Another important point to note is that for certain values of ε,
profits do not vary. This means that for different level of passenger satisfaction,
represented by the Generalized Travel Cost, the revenues are almost the same.
This confirms the results obtained in the PhD thesis of Robenek (2016).

4 Variable neighborhood search heuristic

In the previous section, we have seen that the preliminary results seem to confirm
the results obtained by Robenek (2016). The analysis, based on very small in-
stances using RER Vaud data, shows that an improvement of passenger satisfac-
tion while maintaining a low profit loss for the railway company can be achieved.
However, as expected, the model is too large to be solved exactly using the full
data set. We are therefore investigating an heuristic method. A neighborhood
search heuristic will be investigated. A neighborhood search heuristic explores
the large set of feasible solutions by using an exploration tool that generates a se-
quence of solutions (potentially all of them). Such a tool is called a neighborhood
structure. In our case, each type of timetable (cyclic, non-cyclic, and hybrid)
will have a different neighborhood structure. The passenger assignment will be
carried out within the search algorithm. The passenger assignment procedure is
described in Algorithm 1.

The passenger assignment algorithm is currently implemented. Once the
passenger assignment algorithm will be validated, we will move to the next step,
which is the implementation of the neighborhood search. The general pseudo
code for a neighborhood search is illustrated in Algorithm 2. The code will be
scaled up to our specific problem.
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Algorithm 1

1: procedure Passenger assignment
Input
-The set of operated lines (L)
-The set of available trains per line ` (V `)
-The set of origin-destination pairs (I)
-The set of preferred departure time for origin-destination i (Ti)
-The set of possible paths for origin-destination i (Pi)
-The set of lines used in path p (Lp)
-The first line used in path p (`p1)
-The set of segments on line ` (S`)
-The set of segments on line ` used by path p (S`p)
-The departure time for each train v and line ` (d`v)
-The number of train units for each train v and line ` (µ`

v)
-The revenue rate in CHF per Pax-km (e)
-The operating cost per train in single traction in CHF per Train-km (f)
-The operating cost per additional train unit in CHF per Train-km (o)
-The length of line l (k`)
-The length of segment s (hs)
-The capacity of a single train unit (q)
-The minimum transfer time (m)
-The preference coefficients for waiting time, number of transfers, lateness,
and earliness (βW , βT , βE, βL)
-The running time for origin-destination i on path p using line ` (rp`i )
-The time to arrive from the starting station on line ` to the ori-
gin/transferring point of the origin-destination pair i on path p (bp`i )
-A list of passengers, their origin-destination, and preferred departure time
(ati)
Output
-The number of passengers on segment s in train v on line `
-The generalized cost of travel
-The total profits of the operator

2: for i ∈ I do
3: for t ∈ Ti do
4: for p ∈ Pi do
5: for all combination of trains and lines do
6: calculate GTC
7: sort travel options according to GTC ascending
8: if first travel option doesn’t violate capacity of any train then
9: assign passenger to this option

10: update the total GTC
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5 Next steps

As explained in the previous sections, the model is too large to be solved ex-
actly in the full data set. The next step is therefore to investigate the heuristic
presented in Section 4. Then, timetables obtained with the heuristic will be
compared to the ones received from SBB, and conclusions will be drawn.

Next steps

Neighborhood search heuristic:

- Implementation of the passenger allocation algorithm (in progress)

- Definition of neighborhood structures based on the type of timetables
(in progress)

- Implementation of the neighborhood search (to be done)

- Adding capacity as a decision in the framework (to be done)

Testing (in progress)

- Analysis of results and feedback from SBB

- Comparison with existing timetables
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Conclusions for the RER Vaud (to be done)
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